
Particle Filter Speed Up Using a GPU
John Sacha, Andrew Shaffer

Applied Research Laboratory

The Pennsylvania State University

jrs9@psu.edu

(814) 863-4162

Introduction

For many years, Kalman filters and related

formulations have served as the standard basis for

object tracking applications. Such techniques are

computationally efficient (an important consideration

when processing resources are limited), and provably

optimal when their underlying assumptions of

Gaussianity, linearity, and stationarity are satisfied.

However, these requirements are often violated in

practical applications. Sequential Monte Carlo

techniques, so-called particle filters, represent

probability densities as collections of weighted point-

masses, and the fundamental density propagation

integral equations are solved via Monte Carlo

techniques [1]. Manipulating density functions

represented in this manner is computationally

expensive, but the introduction of cheap

computational power in the form of multi-core

architectures offers the promise of using of such

methods for real-time embedded applications.

Particle filters can facilitate the exploitation of a

priori information in the form of (non-linear) hard-

truncated position, speed, and acceleration

constraints, and the placement of environmental

boundaries. Examples of applications include multi-

modal measurements, passive source localization

[2,3], and tracking spatially-extended objects [4].

Particle Filter Algorithm

The particle cloud approach is both intuitively

appealing and computationally elegant. The generic

algorithm is as follows.

Algorithm I: Particle Filtering

Step 1: Initialization

• Create a collection of N particles:

[] [], | 1, ,i iS w i Nx , where
[]i

x is a

state vector and
[]iw is a scalar weight.

LOOP (over time):

Step 2: Prediction

• Project particles forward according to the

transition equation:
[] [] []f ,i i i

x x v ,

where
[]i

v is an instance of the process

noise.

Step 3: Apply Constraints

• Apply physical constraints: Particle states

that violate a priori conditions such as

forbidden regions or maximum velocity

limits are eliminated:
[] 0iw .

Step 4: Apply Measurement

• Adjust particle weights based on

measurement at time k via
[] [] []f |i i i

kw w x z

Step 5: Resample

• Perform a random sampling (with

replacement),when the effective number of

particles becomes small: r()S S

Step 6: Calculate application-specific ensemble

statistics.
END;

Each particle has an associated weight. This use of

weights allows a high degree of computational

flexibility. It makes it simple to apply the constraints

and measurements to the sample set, and more

importantly, it can simplify generating samples from a

desired density pX(X): i.e., generate particles

according to a proposal distribution qX(X) (for which

it is easy to generate samples, such as uniform or

Gaussian) and weigh the samples according to pX(X)/

qX(X).

As the iteration progresses, information tends to

become concentrated in a small subset of the particles.

(This is true even if weights do not go totally to zero.)

This is computationally wasteful as well as leading to

loss of accuracy. This is the reason for the resampling

step. When the effective number of particles, given by

2

2

1 1

N N

eff i i

i i

N w w

mailto:jrs9@psu.edu

falls below some pre-specified fraction of the desired

population, N, it is advantageous to eliminate low-

weight particles. In the resampling step , N particles

are chosen from the existing population (with

replacement), with the probability of selection being

proportional to the particle weight. Variation is

reintroduced in the subsequent prediction step through

the injection of noise according to the transition

model.

Computational Complexity

The ability of the particle filter to accommodate

arbitrary probability densities comes at the price of

increased computational complexity. For a simple

planar tracking problem with four-dimensional state

(x,y,vx,vy), a particle filter with N=1000 particles can

be about two orders of magnitude more

computationally expensive than a Kalman filter.

Fortunately, the nature of the algorithm makes it a

good candidate for parallel processing, and

implementations have been produced for a variety of

architectures. The prediction step and weight

adjustment processes are “embarrassingly parallel”

computations that do not require communication

between different particles. However, the resampling

step depends upon the entire ensemble of particles:

the standard approach performs a cumulative

summing of the weights, the generation of sorted

random numbers and a sorted list merge. Resampling

is regarded as the major challenge in producing a

parallel formulation of particle filtering [5-8].

Here we examine the implementation of particle filter

components on a multicore GPU, using the CUDA

extensions to the C/C++ language. Key issues include

parallel prefix summation, and tradeoffs between

using an O(N) linear search versus an O(N log N) (but

readily parallelizable) binary search. Order-of-

magnitude speedups over a conventional general-

purpose CPU were observed for some components.

Acknowledgements

This work was sponsored by the Office of Naval

Research under contract number N00014-05-G-

0106/0006. Opinions, interpretations, conclusions and

recommendations are those of the authors and not

necessarily endorsed by the United State Government.

References

[1] Ristic, B.; Arulampalam, S.; Gordon, N., Beyond the

Kalman Filter: Particle Filters for Tracking

Applications, Boston, Artech House, 2004.

[2] Baggeroer, A.B.; Kuperman, W.A.; Mikhalevsky,

P.N.; “An overview of matched field methods in ocean

acoustics,” IEEE Journal of Oceanic Engineering, Vol.

18, No. 4, Oct. 1993, pp. 401–424

[3] Kraut, S;, Krolik, J.; “Moving Target Depth Estimation

For Passive Sonar, Using Sequential Resampling

Techniques,” Proc. Adaptive Sensor Array Processing

Workshop, 14 March 2001, (reprint from Dept. of

ECE, Box 90291 Duke University Durham, NC 27708-

0291).

[4] Vermaak, J.; Ikoma, N.; Godsill, S.J.; “Sequential

Monte Carlo framework for extended object tracking,”

IEE Proceedings Radar, Sonar and Navigation, Vol.

152, No. 5, October 2005, pp. 353–363.

[5] Bolić, M., Djurić, P. M., Hong, S., “Resampling

Algorithms and Architectures for Distributed Particle

Filters,” IEEE Trans. Signal Processing, Vol. 53, No.

7, July 2005, pp. 2442-2450.

[6] Hong, S., Djurić, P. M., “High Throughput Scalable

Parallel Resampling Mechanism for Effective

Redistribution of Particles,” IEEE Trans. Signal

Processing, Vol. 54, No. 3, March 2006, pp. 1144-

1155.

[7] Míguez, J., “Analysis of parallelizable resampling

algorithms for particle filtering,” Signal Processing,

Vol. 87, No. 12, December 2007, Pages 3155-3174.

[8] Lozano, O. M., Otsuka, K., “Simultaneous and fast 3D

tracking of multiple faces in video by GPU-based

stream processing,” Proc. 2008 IEEE International

Conference on Acoustics, Speech and Signal

Processing (ICASSP), 31 March 2008- 4April 2008,

pp. 713 – 716.

http://www.sciencedirect.com/science/journal/01651684
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235668%232007%23999129987%23666110%23FLA%23&_cdi=5668&_pubType=J&view=c&_auth=y&_acct=C000014439&_version=1&_urlVersion=0&_userid=209810&md5=4709fb0eca89a916e9c8f228976e4d8a

