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Introduction  

 
For many years, Kalman filters and related 

formulations have served as the standard basis for 

object tracking applications. Such techniques are 

computationally efficient (an important consideration 

when processing resources are limited), and provably 

optimal when their underlying assumptions of 

Gaussianity, linearity, and stationarity are satisfied. 

However, these requirements are often violated in 

practical applications. Sequential Monte Carlo 

techniques, so-called particle filters, represent 

probability densities as collections of weighted point-

masses, and the fundamental density propagation 

integral equations are solved via Monte Carlo 

techniques [1]. Manipulating density functions 

represented in this manner is computationally 

expensive, but the introduction of cheap 

computational power in the form of multi-core 

architectures offers the promise of using of such 

methods for real-time embedded applications. 

 

Particle filters can facilitate the exploitation of a 

priori information in the form of (non-linear) hard-

truncated position, speed, and acceleration 

constraints, and the placement of environmental 

boundaries. Examples of applications include multi-

modal measurements, passive source localization 

[2,3], and tracking spatially-extended objects [4]. 

 

 

Particle Filter Algorithm  
 

The particle cloud approach is both intuitively 

appealing and computationally elegant. The generic 

algorithm is as follows. 

 

Algorithm I: Particle Filtering  

 
Step 1: Initialization  

• Create a collection of N particles: 

[ ] [ ], | 1, ,i iS w i Nx , where 
[ ]i

x  is a 

state vector and 
[ ]iw is a scalar weight. 

 

 

LOOP (over time): 

Step 2: Prediction 

• Project particles forward according to the 

transition equation: 
[ ] [ ] [ ]f ,i i i

x x v , 

where 
[ ]i

v is an instance of the process 

noise. 

Step 3: Apply Constraints 

• Apply physical constraints: Particle states 

that violate a priori conditions such as 

forbidden regions or maximum velocity 

limits are eliminated: 
[ ] 0iw . 

Step 4: Apply Measurement 

• Adjust particle weights based on 

measurement at time k via 
[ ] [ ] [ ]f |i i i

kw w x z  

Step 5: Resample 

• Perform a random sampling (with 

replacement),when the effective number of 

particles becomes small: r( )S S  

Step 6: Calculate application-specific ensemble 

statistics. 
END; 

 
Each particle has an associated weight. This use of 

weights allows a high degree of computational 

flexibility. It makes it simple to apply the constraints 

and measurements to the sample set, and more 

importantly, it can simplify generating samples from a 

desired density pX(X): i.e., generate particles 

according to a proposal distribution qX(X) (for which 

it is easy to generate samples, such as uniform or 

Gaussian) and weigh the samples according to pX(X)/ 

qX(X).  

 

As the iteration progresses, information tends to 

become concentrated in a small subset of the particles. 

(This is true even if weights do not go totally to zero.) 

This is computationally wasteful as well as leading to 

loss of accuracy. This is the reason for the resampling 

step. When the effective number of particles, given by 
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falls below some pre-specified fraction of the desired 

population, N, it is advantageous to eliminate low-

weight particles. In the resampling step , N particles 

are chosen from the existing population (with 

replacement), with the probability of selection being 

proportional to the particle weight. Variation is 

reintroduced in the subsequent prediction step through 

the injection of noise according to the transition 

model. 

 

Computational Complexity  
 

The ability of the particle filter to accommodate 

arbitrary probability densities comes at the price of 

increased computational complexity. For a simple 

planar tracking problem with four-dimensional state 

(x,y,vx,vy), a particle filter with N=1000 particles can 

be about two orders of magnitude more 

computationally expensive than a Kalman filter. 

 

Fortunately, the nature of the algorithm makes it a 

good candidate for parallel processing, and 

implementations have been produced for a variety of 

architectures. The prediction step and weight 

adjustment processes are “embarrassingly parallel” 

computations that do not require communication 

between different particles. However, the resampling 

step depends upon the entire ensemble of particles: 

the standard approach performs a cumulative 

summing of the weights, the generation of sorted 

random numbers and a sorted list merge. Resampling 

is regarded as the major challenge in producing a 

parallel formulation of particle filtering [5-8].  

 

Here we examine the implementation of particle filter 

components on a multicore GPU, using the CUDA 

extensions to the C/C++ language. Key issues include 

parallel prefix summation, and tradeoffs between 

using an O(N) linear search versus an O(N log N) (but 

readily parallelizable) binary search. Order-of-

magnitude speedups over a conventional general-

purpose CPU were observed for some components. 
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