

An FPGA Implementation of Incremental Clustering for Radar Pulse Deinterleaving

Scott Bailie

Prof. Miriam Leeser

MIT Lincoln Laboratory

Northeastern University

MIT Lincoln Laboratory

HPEC10-1 SMB 9/15/2010 This work is sponsored by the Department of the Air Force under Air Force Contract FA8721-05-C-0002. The opinions, interpretations conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Pulse Deinterleaving for Electronic Warfare

- Multiple radars in the environment can result in a single stream of interleaved pulses at a receiver
- Deinterleaving separates the combined receive signal into individual pulse streams for processing
- Dense environments can contain >1M pulses / second

Approach

- Use an incremental clustering algorithm to identify individual radar emitters
- What is Incremental Clustering?
 - Clustering partitions similar data samples into groups called clusters
 - Incremental algorithms operate in on-line (streaming) mode
 - Fast, require minimal storage, suitable for dynamic data
- Proposed Solution
 - 2-D Clustering of frequency and pulse width parameters
 - Cluster coordinates evolve over time
 - Fade mechanism emphasizes newer data and filters outliers

- Parallelize cluster modules to minimize processing latency
 - Each cluster simultaneously determines distance to current input
 - Input is assigned to nearest cluster

- Implementation platform Innovative Integration X5-400M
 - Xilinx Virtex 5 SX95T
- Results
 - 16 cluster design yields 70% FPGA utilization
 - 420ns processing latency at 200 MHz
 - Capable of processing 2.4 million pulses per second
 - 39X speedup over software implementation

