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Background 
A military aircraft in a hostile environment may need to use 

radar jamming in order to avoid being detected or engaged 

by the enemy.  Effective jamming can require knowledge of 

the number and type of enemy radars; however, the radar 

receiver on the aircraft will observe a single stream of 

pulses from all radar emitters combined.  It is advantageous 

to separate this collection of pulses into individual streams 

each corresponding to a particular emitter in the 

environment; this process is known as pulse deinterleaving.  

Pulse deinterleaving is critical for effective electronic 

warfare (EW) signal processing such as electronic attack 

(EA) and electronic protection (EP) because it not only aids 

in the identification of enemy radars but also permits the 

intelligent allocation of processing resources.  

Receiver front-ends perform numerous measurements on 

each input pulse including, but not limited to, time of 

arrival (TOA), pulse width (PW), and frequency (RF). The 

collection of these measurements forms a pulse descriptor 

word (PDW) describing the characteristics of the pulse. 

Using clustering, a pattern recognition and data mining 

technique that attempts to separate related data into groups 

called clusters, it is possible to deinterleave a single stream 

of radar PDWs and identify the number and characteristics 

of the radars in the operating environment.   

The FPGA implementation of a novel  incremental 

clustering algorithm for pulse deinterleaving is presented, 

including an architecture description and the resulting 

performance and area metrics.  The FPGA implementation 

is 40 times faster than software and is capable of keeping 

up with input data in real time.   

Algorithm Overview
1
 

Unlike non-incremental algorithms that require all data to 

be present prior to processing, incremental approaches 

cluster data in a streaming mode as it is received.  Being a 

one-pass approach, incremental clustering is relatively fast, 

requires little long-term storage, and is suitable for data 

whose characteristics may evolve over time. 

The algorithm developed for this implementation is called 

Incremental Clustering for Evolving Data, or ICED.  ICED 

performs clustering using the PW and RF parameters which 

results in each input PDW being defined by a single point 

in the 2-dimensional PW / RF space.  This is demonstrated 

in Figure 1 for three radar emitters with unique PW and RF 

characteristics.  As inputs are received by the algorithm, the 

                                                 
* This work is sponsored by the Department of the Air Force under Air 

Force Contract FA8721-05-C-0002. The opinions, interpretations,  
conclusions, and recommendations are those of the authors and are not 

necessarily endorsed by the United States Government. 

distance from the input to each existing cluster is 

calculated.  If the distance to the nearest cluster is less than 

a specified threshold, then the input is assigned to that 

cluster and the cluster’s coordinates are updated as a 

weighted average of the current cluster coordinates and the 

coordinates of the input.  If the distance to the nearest 

cluster exceeds the specified threshold, a new cluster, with 

the coordinates of the input, is created.   

 

 

Figure 1 - Clustering of PW & RF Parameters 

Every time an input is assigned to a cluster the weight of 

that cluster, representing its strength, is incremented.   Since 

clusters may cease to be assigned new data if the 

characteristics of a particular radar changes or if that radar 

is no longer in range, ICED contains a fade mechanism to 

phase out stale clusters.  As previously mentioned, cluster 

weights are incremented as new data is assigned to that 

cluster. Keeping track of time using the TOA parameter the 

fade operation periodically decreases cluster weights 

providing a higher dependence on new data and removing 

stale clusters.  

Pulses from radars emitting at different pulse repetition 

intervals (PRIs) will eventually result in overlapping pulses 

at the receiver, as shown in Figure 2.  The measured PW 

and RF will likely result in the creation of a cluster which 

does not correspond to an actual emitter in the environment.  

Based on the expected infrequent occurrence of these 

overlaps, the clusters formed by these cases will have low 

weights and the fade mechanism will act as a filter by 

deleting them quickly.   

 

Figure 2 - Example of Overlapping Pulses 
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Implementation 
The ICED algorithm is implemented on an Innovative 

Integration X5-400M XMC module containing a Xilinx 

Virtex-5 SX95T FPGA.  Emitter scenarios are developed in 

MATLAB and PDW inputs are created in software using a 

SIMULINK model of a pulse measurement module.  The 

PW and RF inputs are represented by 16-bit unsigned 

integers while the TOA parameter is represented by a 32-bit 

unsigned integer.  Cluster parameters such as coordinates 

and weight are available in real-time via software accessible 

FPGA registers.  

A top-level block diagram is shown in Figure 3.  Inputs are 

first buffered in a FIFO permitting asynchronous operation 

from the pulse measurement module.  The first step is to 

normalize the PW and RF values ensuring an equal 

weighting in each dimension.  Simultaneously, the Fade 

module calculates the cluster weight decrement based on 

the elapsed time since the previous input.  Next, the 

normalized PW and RF parameters and the fade value are 

passed to the Clusters module.  Here, an array of n cluster 

center modules, C0 – Cn-1, simultaneously calculate their 

respective distances to the input.  The resulting distances as 

well as current cluster weights are supplied to the Min_d 

and Min_w modules.  The Min_d and Min_w modules are 

responsible for finding the clusters with the minimum 

distance to the input and minimum weight, respectively.  

 

Figure 3 - Top-Level Block Diagram 

The job of the Cluster Assignment module is to pick the 

winning cluster based on the minimum distance and weight 

calculation.  The cluster with the minimum distance is 

chosen if its distance satisfies the specified threshold.  

Otherwise, the lightest cluster is selected as a replacement 

for creating a new cluster.  When resources are available, 

the choice will result in the selection of an unused cluster 

(weight = 0) and when all resources are consumed it will 

result in the selection of the “weakest” cluster (lightest 

weight), possibly representing noise or an overlap 

condition.  In a hardware implementation with fixed 

resources, such a decision is necessary.   

The assignment decision is fed back to the cluster center 

modules allowing the wining cluster to update its 

coordinates.  To decrease overall latency, every cluster 

center assumes it will be the winner and begins the 

coordinate update calculation in parallel with the distance 

calculation and determination of the wining cluster, this is 

shown in Figure 4.   

Once the winner is chosen, the corresponding cluster center 

updates its coordinates with the calculated value while all 

other centers remain unchanged.   Finally, the Assigned 

module selects the coordinates of the winning cluster, 

which are then output after being converted to the native 

input units.  

 

Figure 4 - Cluster Center Module 

Results 
The area consumption based on the number of implemented 

clusters is shown in Figure 5.  The current implementation 

is for 16 cluster centers and consumes approximately 70% 

of the SX95T FPGA.  

 

Figure 5 - FPGA Utilization vs. Number of Clusters 

The resulting processing latency is 84 clock cycles and is 

shown in Figure 6. This corresponds to 420ns with the 

current clock frequency of 200MHz and results in a 39x 

speedup over a C implementation running on a 3.00 GHz 

Intel Xeon 5160.  

 

Figure 6 - Processing Latency for Major Modules 

In an actual scenario, the deinterleaver must be able to keep 

up with the flow of input pulses, which is a function of the 

number of emitters and their pulse repetition frequency 

(PRF).  Using a typical high PRF value of 200 KHz as an 

example, the current FPGA implementation could support 

nearly 12 such emitters, which would represent an 

extremely dense environment.  

Conclusions 
Effective EA and EP require pulse deinterleaving to enable 

proper identification of received radar waveforms and in 

turn intelligently allocate processing resources in real-time.  

A parallelized 16 cluster implementation of the ICED 

algorithm consumes 70% of a Xilinx Virtex-5 FPGA and 

results in a 39x speedup over software.  This performance is 

more than adequate for anticipated environments and future 

work might target time sharing of resources between cluster 

modules, in turn decreasing parallelism and allowing other 

system modules to be co-located on the same FPGA.  


