
An FPGA Implementation of Incremental Clustering for Radar Pulse
Deinterleaving

 Scott Bailie Miriam Leeser

 bailie@ll.mit.edu mel@coe.neu.edu

 MIT Lincoln Laboratory, Lexington, MA Northeastern University, Boston, MA

Background
A military aircraft in a hostile environment may need to use

radar jamming in order to avoid being detected or engaged

by the enemy. Effective jamming can require knowledge of

the number and type of enemy radars; however, the radar

receiver on the aircraft will observe a single stream of

pulses from all radar emitters combined. It is advantageous

to separate this collection of pulses into individual streams

each corresponding to a particular emitter in the

environment; this process is known as pulse deinterleaving.

Pulse deinterleaving is critical for effective electronic

warfare (EW) signal processing such as electronic attack

(EA) and electronic protection (EP) because it not only aids

in the identification of enemy radars but also permits the

intelligent allocation of processing resources.

Receiver front-ends perform numerous measurements on

each input pulse including, but not limited to, time of

arrival (TOA), pulse width (PW), and frequency (RF). The

collection of these measurements forms a pulse descriptor

word (PDW) describing the characteristics of the pulse.

Using clustering, a pattern recognition and data mining

technique that attempts to separate related data into groups

called clusters, it is possible to deinterleave a single stream

of radar PDWs and identify the number and characteristics

of the radars in the operating environment.

The FPGA implementation of a novel incremental

clustering algorithm for pulse deinterleaving is presented,

including an architecture description and the resulting

performance and area metrics. The FPGA implementation

is 40 times faster than software and is capable of keeping

up with input data in real time.

Algorithm Overview
1

Unlike non-incremental algorithms that require all data to

be present prior to processing, incremental approaches

cluster data in a streaming mode as it is received. Being a

one-pass approach, incremental clustering is relatively fast,

requires little long-term storage, and is suitable for data

whose characteristics may evolve over time.

The algorithm developed for this implementation is called

Incremental Clustering for Evolving Data, or ICED. ICED

performs clustering using the PW and RF parameters which

results in each input PDW being defined by a single point

in the 2-dimensional PW / RF space. This is demonstrated

in Figure 1 for three radar emitters with unique PW and RF

characteristics. As inputs are received by the algorithm, the

* This work is sponsored by the Department of the Air Force under Air

Force Contract FA8721-05-C-0002. The opinions, interpretations,
conclusions, and recommendations are those of the authors and are not

necessarily endorsed by the United States Government.

distance from the input to each existing cluster is

calculated. If the distance to the nearest cluster is less than

a specified threshold, then the input is assigned to that

cluster and the cluster’s coordinates are updated as a

weighted average of the current cluster coordinates and the

coordinates of the input. If the distance to the nearest

cluster exceeds the specified threshold, a new cluster, with

the coordinates of the input, is created.

Figure 1 - Clustering of PW & RF Parameters

Every time an input is assigned to a cluster the weight of

that cluster, representing its strength, is incremented. Since

clusters may cease to be assigned new data if the

characteristics of a particular radar changes or if that radar

is no longer in range, ICED contains a fade mechanism to

phase out stale clusters. As previously mentioned, cluster

weights are incremented as new data is assigned to that

cluster. Keeping track of time using the TOA parameter the

fade operation periodically decreases cluster weights

providing a higher dependence on new data and removing

stale clusters.

Pulses from radars emitting at different pulse repetition

intervals (PRIs) will eventually result in overlapping pulses

at the receiver, as shown in Figure 2. The measured PW

and RF will likely result in the creation of a cluster which

does not correspond to an actual emitter in the environment.

Based on the expected infrequent occurrence of these

overlaps, the clusters formed by these cases will have low

weights and the fade mechanism will act as a filter by

deleting them quickly.

Figure 2 - Example of Overlapping Pulses

mailto:mel@coe.neu.edu

Implementation
The ICED algorithm is implemented on an Innovative

Integration X5-400M XMC module containing a Xilinx

Virtex-5 SX95T FPGA. Emitter scenarios are developed in

MATLAB and PDW inputs are created in software using a

SIMULINK model of a pulse measurement module. The

PW and RF inputs are represented by 16-bit unsigned

integers while the TOA parameter is represented by a 32-bit

unsigned integer. Cluster parameters such as coordinates

and weight are available in real-time via software accessible

FPGA registers.

A top-level block diagram is shown in Figure 3. Inputs are

first buffered in a FIFO permitting asynchronous operation

from the pulse measurement module. The first step is to

normalize the PW and RF values ensuring an equal

weighting in each dimension. Simultaneously, the Fade

module calculates the cluster weight decrement based on

the elapsed time since the previous input. Next, the

normalized PW and RF parameters and the fade value are

passed to the Clusters module. Here, an array of n cluster

center modules, C0 – Cn-1, simultaneously calculate their

respective distances to the input. The resulting distances as

well as current cluster weights are supplied to the Min_d

and Min_w modules. The Min_d and Min_w modules are

responsible for finding the clusters with the minimum

distance to the input and minimum weight, respectively.

Figure 3 - Top-Level Block Diagram

The job of the Cluster Assignment module is to pick the

winning cluster based on the minimum distance and weight

calculation. The cluster with the minimum distance is

chosen if its distance satisfies the specified threshold.

Otherwise, the lightest cluster is selected as a replacement

for creating a new cluster. When resources are available,

the choice will result in the selection of an unused cluster

(weight = 0) and when all resources are consumed it will

result in the selection of the “weakest” cluster (lightest

weight), possibly representing noise or an overlap

condition. In a hardware implementation with fixed

resources, such a decision is necessary.

The assignment decision is fed back to the cluster center

modules allowing the wining cluster to update its

coordinates. To decrease overall latency, every cluster

center assumes it will be the winner and begins the

coordinate update calculation in parallel with the distance

calculation and determination of the wining cluster, this is

shown in Figure 4.

Once the winner is chosen, the corresponding cluster center

updates its coordinates with the calculated value while all

other centers remain unchanged. Finally, the Assigned

module selects the coordinates of the winning cluster,

which are then output after being converted to the native

input units.

Figure 4 - Cluster Center Module

Results
The area consumption based on the number of implemented

clusters is shown in Figure 5. The current implementation

is for 16 cluster centers and consumes approximately 70%

of the SX95T FPGA.

Figure 5 - FPGA Utilization vs. Number of Clusters

The resulting processing latency is 84 clock cycles and is

shown in Figure 6. This corresponds to 420ns with the

current clock frequency of 200MHz and results in a 39x

speedup over a C implementation running on a 3.00 GHz

Intel Xeon 5160.

Figure 6 - Processing Latency for Major Modules

In an actual scenario, the deinterleaver must be able to keep

up with the flow of input pulses, which is a function of the

number of emitters and their pulse repetition frequency

(PRF). Using a typical high PRF value of 200 KHz as an

example, the current FPGA implementation could support

nearly 12 such emitters, which would represent an

extremely dense environment.

Conclusions
Effective EA and EP require pulse deinterleaving to enable

proper identification of received radar waveforms and in

turn intelligently allocate processing resources in real-time.

A parallelized 16 cluster implementation of the ICED

algorithm consumes 70% of a Xilinx Virtex-5 FPGA and

results in a 39x speedup over software. This performance is

more than adequate for anticipated environments and future

work might target time sharing of resources between cluster

modules, in turn decreasing parallelism and allowing other

system modules to be co-located on the same FPGA.

