
VSI/Pro®-GPU: Commercial VSIPL Support for Single and Multkernel GP-
GPU Accelerated Signal and Image Processing based on CUDA and Fermi

Anthony Skjellum, PhD, Jennifer H. Skjellum

RunTime Computing Solutions, LLC
1500 1st Avenue North, Suite C112/U19, Birmingham, AL 35203, USA

{tony,jennifer}@runtimecomputing.com

Overview1

In this poster, the VSI/Pro-GPU commercial VSIPL product
is introduced. This commercial offering of the VSIPL
standard builds on more than thirteen years' experience with
commercial VSIPL in the VSI/Pro product family originally
designed by MPI Software Technology, Inc and its
subsidiaries during the late 1990's. The VSI/Pro-GPU
product leverages a commercial license of the academic
software library GPU VSIPL for NVIDIA CUDA
developed by Georgia Tech by Campbell, Richards, et al
[1], which has provided many end-users with an excellent
starting point for VSIPL development on NIVIDIA/CUDA-
based GP-GPUs, as well as a newly designed architecture
and technology and a specific merging of multithreaded
VSI/Pro for the multicore processing with GPU accelerated
kernels.

The design, scope of functionality in terms of VSIPL
profiles, and currently available product feature set are
described. Benchmarks with NVIDIA Fermi via the GTX-
480 family of NVIDIA graphics cards are offered, front-
ended with an Intel multicore Nehalam 920 multicore
processor. Demonstration with the earlier TESLA and
GTX-295 cards is also demonstrated briefly, in which only
single kernels are supported. The use of two GPUs
simultaneously is also supported

VSI/Pro-GPU is capable of being employed into defense
programs as of now. With the emergence of GPUs for
embedded applications, such as the GE NPN 240 [6], use of
VSIPL in high performance embedded computing is
immediately feasible both in terms of hardware and
software support. Embedded GPUs may initially offer less
functionality than their desktop counterparts, but such
differences may lessen over time.

Programming Model and Library Model
In order to define a production-class VSIPL for GPU's, the
VSIPL programming model has had to be slightly extended,
with added concepts for heterogeneous memory, multiple
computation units, and for mapping to these units as a
function of problem instance. Such extensions result in no-
ops on non-GPU instances of VSIPL, providing continued
portability of the standard and programs written in VSI/Pro-
GPU.

Separately, we have proposed strategies that cover
multithreaded VSIPL for multicore processors [5,8]. All of
the programming model concerns associated with multicore
VSIPL discussed in [5,8] have to be addressed in VSI/Pro-

1

GPU, which emphasizes support for NVIDIA CUDA, in
which multiple cores can drive the GPU via pthread-type
concurrency, and multiple kernels can be simultaneously
scheduled on the GPU. In particular, admit-release
concepts are extended for multiple memory spaces.

The CUDA driver API is essential to the fine-grain control
of GP-GPU programs with non-trivial scheduling goals and
with the composition of multiple users of the GPUS in the
systems. Unlike the academic GPU VSIPL upon which
VSI/Pro-GPU is based in part, users of VSI/Pro-GPU have
an underlying driver architecture which allows for far
greater control of the system, including dynamic
compilation of kernels at runtime. This supports a number
of online/runtime optimization possibilities.

Features
The VSI/Pro-GPU product is described in terms of its
compliance to the VSIPL standard 1.3. VSI/Pro-GPU
accelerated portion provides these capabilities:

• GP-GPU Acceleration of the CoreLite
functionality for signal processing, with both
single and double precision support.

• Multithreaded VSIPL program execution, where
Pthread-type threads work with optimistic locking
when they operate on independent data and VSIPL
objects, providing their own locks when
simultaneously sharing objects or memory
between threads.

• Additional functionality and hinting to help
establish the use of both multiple GPUs and
multiple kernels per GPU.

• The remainder of the Core Full operations are not
GPU accelerated as of the September release, but
are SIMD accelerated under the VSI/Pro, with
plans for future GP-GPU acceleration.

• Extensions to deal with memory and objects bound
to different parts of the heterogeneous memory
space during execution of an application, with
need for explicit or implict copy are described.
Reducing explicit copies is also discussed.

• Exploiting multiprocessor concurrency to hide
latency is also discussed in terms of the overall use
of VSI/Pro-GPU.

In addition, we demonstrate the ability for the user program
or an alternative library to use the Fermi GPU
collaboratively with VSI/Pro-GPU.

Importantly, the approach taken by VSI/Pro-GPU makes
compliant VSIPL programs work immediately and unlocks
availability opportunities for greater performance and
scalability by optional use of extended notations and
options. Furthermore VSI/Pro-GPU provides an easy
upward compatibility path for users of GPU VSIPL.

Image Processing Proposed Standard
As with the VSI/Pro product family for G4/e600, G5, and
x86 processor families, RunTime Computing Solutions
offers the image-processing draft standard functionality
originally promulgated by Stan Ahalt and others. These
functions map naturally to GPUs, which are exceptionally
well designed and familiar to image processing algorithms.
These concepts have been part of the discussion of VSIPL
standardization and commercial support for several years
(e.g., [7]).

At the September 2010 product release schedule, these
functions are demonstration only, but we present their
current capability set, and describe how VSI/Pro-GPU can
be turned to trade-off using multicore implementations vs.
GPU instances depending on image size.

VSIPL++ Options
VSIPL++ offers a convenient way to express VSIPL from
C++. Use of the VSIPL++ layerable implementation with
VSI/Pro-GPU is discussed, and plans for integrated
optimization are described briefly.

Conclusions
VSI/Pro-GPU offers an architecture, implementation, and
roadmap for complete VSIPL and VSIPL image processing
capability on single and multiple GPUs supporting CUDA,
and when exploiting Fermi GPUs, exploiting simultaneous
multi-kernel capabilities. This product is ready for use in
high performance embedded computing applications.

Current product capability and performance are presented.
Needed extensions to the VSIPL standard to exploit this
hierarchical processing and memory hierarchy are shown,
with a view toward future standardization of these concepts
to ensure global portability.

Importantly, the decisions of when to use and not to use the
GPU are tunable by the user, or to the library, depending on
user's preference, and the ability to capture performance
profiling information is discussed. In this sense, optimized
library functions have both “SIMD” and “GPU” modes,
analogous to scalar and vector modes in a classical vector
computer.

VSI/Pro-GPU technology offers defense programs with the
ability to move their VSIPL-based applications to GPUs
with minimal code rewrite for functionality, and the ability
to exploit multprocessing and GPU kernel-based
performance immediately, with continued enhancement of

performance as the product matures. Continued portability
between GPU and non-GPU instances of embedded
systems will remain possible with straightforward use of
VSI/Pro-GPU, avoiding application “code forks.”

References
[1] D Campbell and M. Richards et al, GPU VSIPL home page,

http://gpu-vsipl.gtri.gatech.edu/, accessed May 20, 2010,

[2] VSIPL Standards, URL: www.vsipl.org ; accessed May 19,
2010.

[3] Cain, Kenneth, and Sroka, Brian, “Experiences in Porting an
Existing Application to the VSIP API,” MITRE Corporation,
July 22, 1997, presented at the VSIP Meeting, URL:
http://www.vsipl.org/VSIP_Exp.pdf , accessed May 19, 2010.

[4] Exascale Software Study, Kogge et al, URL:
http://users.ece.gatech.edu/mrichard/ExascaleComputingStud
yReports/ECSS%20report%20101909.pdf , accessed May 19,
2010.

[5] A. Skjellum, “Multicore, Multithreaded, and/or Multi-GPU-
Kernel VSIPL Standardization: Implementation and
Programming Impacts: Syntax, Semantics, and Models, short
paper submitted to HPEC 2010, May 2010.

[6] GE NPN 240 Product home page, URL:
http://www.embeddedstar.com/weblog/2010/03/19/npn240-
gpgpu/ , accessed May 27, 2010.

[7] Anonymous, VSIPL image processing compatibility,
http://www.hpec-si.org/private/HPEC%20-%20Verari
%20Image%20Processing.ppt, August 2006, accessed May
27, 2010.

[8] A. Skjellum, “Multicore, Multithreaded VSIPL
Standardization: Implementation and Programming Impacts:
Syntax, Semantics, and Models,” short briefing, HPEC-SI
2010 meeting, June 2010.

http://gpu-vsipl.gtri.gatech.edu/
http://www.hpec-si.org/private/HPEC%20-%20Verari%20Image%20Processing.ppt
http://www.hpec-si.org/private/HPEC%20-%20Verari%20Image%20Processing.ppt
http://www.embeddedstar.com/weblog/2010/03/19/npn240-gpgpu/
http://www.embeddedstar.com/weblog/2010/03/19/npn240-gpgpu/
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://www.vsipl.org/VSIP_Exp.pdf
http://www.vsipl.org/

