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Various Complex Networks

• Friendship network
Cit ti t k• Citation network

• Web-link graph
C ll b ti t kSource: http://www facebook com • Collaboration network

=> Need to extract 
h f l

Source: http://www.facebook.com

graphs from large 
volumes of raw data.

=> Extracted graphs are=> Extracted graphs are 
highly irregular.
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Source: 
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A Challenge Problem

• Extracting a subgraph from a 
larger graph a=0.55

a b=0.1

larger graph.
- The input graph: An R-MAT* graph 

(undirected, unweighted) with c=0 1 d=0 25

c d

(undirected, unweighted) with 
approx. 4.29 billion vertices and 
275 billion edges (7.4 TB in text 
format)

c=0.1 d=0.25

format).
- Extract subnetworks that cover 

10%, 5%, and 2% of the vertices.
• Finding a single-pair shortest 

path (for up to 30 pairs).
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* D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model 
for graph mining,” SIAM Int’l Conf. on Data Mining (SDM), 2004.

Source: Seokhee Hong



Presentation Outline

• Present the hybrid system.
S l th bl i th diff t• Solve the problem using three different 
systems: A MapReduce cluster, a highly 
multithreaded system and the hybrid systemmultithreaded system, and the hybrid system.

• Show the effectiveness of the hybrid system 
byby
- Algorithm level analyses
- System level analysesy y
- Experimental results
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Highlights

A MapReduce cluster
A highly 

multithreaded A hybrid system 
of the twosystem of the two

Theory 
level

Graph extraction: 
WMapReduce(n) ≈ θ(T*(n))

Work optimal Effective if
|Thmt - TMapReduce| > level 

analysis

p

Shortest path: 
WMapReduce(n) > θ(T*(n))

| hmt MapReduce|
n / BWinter

System Bisection bandwidth Limited aggregate BWinter is System 
level 

analysis

and disk I/O overhead
gg g

computing power, 
disk capacity, and 
I/O bandwidth

inter
important.

Experi-
ments

Five orders of 
magnitude slower than 
the highly multithreaded 
system in finding a

Incapable of storing 
the input graph

Efficient in 
solving the 
challenge 
problemsystem in finding a 

shortest path
problem.
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A Hybrid System to Address the
Distinct Computational ChallengesDistinct Computational Challenges

A highly
multithreaded

A MapReduce cluster

system

A MapReduce cluster
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A Hybrid System to Address the
Distinct Computational ChallengesDistinct Computational Challenges

1. graph extraction
2 h

A highly
multithreaded

2. graph
analysis
queriesA MapReduce cluster

system

queriesA MapReduce cluster
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The MapReduce Programming Model
• Scans the entire 

input data in the 
map

map

sort

sort

reduce

reduce p
map phase.

• # MapReduce 

map

map

sort

sort

reduce

reduce

iterations = the 
depth of a directed 

li h

map sort reduce

Input
data

Intermediate
data

Sorted
intermediate

Output
data

acyclic graph 
(DAG) for 
MapReduce

data

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]
Depth

1

MapReduce 
computationA’[0] A’[1] A’[2] A’[3] A’[4]2

7
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Evaluating the efficiency of
M R d Al ithMapReduce Algorithms
• WMapReduce = Σi = 1 to k (O(ni • (1 + fi • (1 + ri)) + pr • 

Sort(n f / p ))Sort(nifi / pr))
- k: # MapReduce iterations.
- ni: the input data size for the ith iteration.i
- fi: map output size / map input size
- ri: reduce output size / reduce input size.

p : # reducers- pr: # reducers
• Extracting a subgraph

k = 1 and f << 1W (n) ≈ θ(T*(n)) T*(n): the- k = 1 and fi << 1 WMapReduce(n) ≈ θ(T (n)), T (n): the 
time complexity of the best sequential algorithm

• Finding a single-pair shortest path
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Bisection Bandwidth 
Requirements for a MapReduce ClusterRequirements for a MapReduce Cluster
• The shuffle phase, which requires inter-node 

communication, can be overlapped with the , pp
map phase.

• If Tmap > Tshuffle, Tshuffle does not affect the 
overall execution timeoverall execution time.
- Tmap scales trivially.
- To  scale Tshuffle linearly, bisection bandwidth also 

d t l i ti t b f dneeds to scale in proportion to a number of nodes. 
Yet, the cost to linearly scale bisection bandwidth 
increases super-linearly.
If f << 1 the sub linear scaling of T does not- If f << 1, the sub-linear scaling of Tshuffle does not 
increase the overall execution time.

- If f ≈ 1, it increases the overall execution time.
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A single-pair shortest path
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A single-pair shortest path
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A single-pair shortest path
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Disk I/O overhead

• Disk I/O overhead is unavoidable if the size of 
data overflows the main memory capacitydata overflows the main memory capacity.

• Raw data can be very large.
E t t d h h ll• Extracted graphs are much smaller.
- The Facebook network: 400 million users × 130 

friends per user less than 256 GB using thefriends per user  less than 256 GB using the 
sparse representation.
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A Highly Multithreaded System
w/ the Shared Memory Programming Modelw/ the Shared Memory Programming Model

• Provide a random access 
mechanism

Sun Fire T2000 (Niagara)

mechanism.
• In SMPs, non-contiguous 

accesses are expensive *accesses are expensive.
• Multithreading tolerates 

memory access latency +

Source: Sun Microsystems

Cray XMT

memory access latency.+
• There is a work optimal 

parallel algorithm to find aparallel algorithm to find a 
single-pair shortest path.

Source: Cray
* D. R. Helman and J. Ja’Ja’, “Prefix computations on symmetric multiprocessors,” J. of parallel and 
di t ib t d ti 61(2) 2001
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distributed computing, 61(2), 2001.
+ D. A. Bader, V. Kanade, and K. Madduri, “SWARM: A parallel programming framework for multi-core 
processors,” Workshop on Multithreaded Architectures and Applications, 2007.



A single-pair shortest path
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A single-pair shortest path
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A single-pair shortest path
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Low Latency High Bisection
Bandwidth Interconnection NetworkBandwidth Interconnection Network
• Latency increases as the size of a system 

increasesincreases.
- A larger number of threads and additional 

parallelism are required as latency increases.parallelism are required as latency increases.
• Network cost to linearly scale bisection 

bandwidth increases super-linearly.p y
- But not too expensive for a small number of nodes.

• These limit the size of a system.
- Reveal limitations in extracting a subgraph from a 

very large graph.
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The Time Complexity of an
Algorithm on the Hybrid SystemAlgorithm on the Hybrid System
• Thybrid = Σi = 1 to k min(Ti, MapReduce + Δ, Ti, hmt + Δ)

k # t- k: # steps
- Ti, MapReduce and Ti, hmt: time complexities of the ith step 

on a MapReduce cluster and a highly multithreadedon a MapReduce cluster and a highly multithreaded 
system, respectively.

- Δ: ni / BWinter ×δ(i – 1, i), 
- ni : the input data size for the ith step.
- BWinter: the bandwidth between a MapReduce cluster 

and a highly multithreaded systemand a highly multithreaded system.
- δ(i – 1, i): 0 if selected platforms for the i - 1th and ith

steps are same. 1, otherwise.
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Test Platforms

• A MapReduce cluster
- 4 nodes4 nodes
- 4 dual core 2.4 GHz Opteron 

processors and 8 GB main 
memory per node.

Source: http://hadoop.apache.org/

Sun Fire T2000 (Niagara)memory per node.
- 96 disks (1 TB per disk).

• A highly multithreaded 
system

Sun Fire T2000 (Niagara)

system
- A single socket UltraSparc T2 

1.2 GHz processor (8 core, 64 
threads)threads).

- 32 GB main memory.
- 2 disks (145 GB per disk)

Source: Sun Microsystems

• A hybrid system of the two
16



A subgraph that covers 10%
of the input graphof the input graph
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Once the subgraph is loaded into the memory, the hybrid system 
analyzes the subgraph five orders of magnitude faster than the
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analyzes the subgraph five orders of magnitude faster than the 
MapReduce cluster (103 hours vs 2.6 seconds).



Subgraphs that cover 
5% (left) and 2% (right) of the input graph
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Conclusions

• We identified the key computational 
challenges in large scale complex networkchallenges in large-scale complex network 
analysis problems.

• Our hybrid system effectively addresses the• Our hybrid system effectively addresses the 
challenges by using a right tool in a right 
place in a synergistic way.place in a synergistic way.

• Our work showcases a holistic approach to 
solve real-world challenges.g
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