Large Scale Complex Network Analysis Using the Hybrid Combination of a
MapReduce Cluster and a Highly Multithreaded System

Seunghwa Kang and David A. Bader
Georgia Institute of Technology
Atlanta, GA, 30332, USA

Introduction

Complex Networks abstract interactions among entities in a
wide range of domains in a graph representation, and
analyzing complex networks often solves many real-world
problems. For example, Albert et al. [1] study the impact of
a power-law degree distribution, which is a common feature
in many complex networks, on the vulnerability of the
Internet.

Analyzing large scale complex networks, however, imposes
difficult computing challenges. Many graphs that represent
complex networks have millions to billions of vertices and
edges. These graphs are often embedded in raw (and often
streaming) data of terabytes to petabytes. Extracting the
compact representation of a graph or a subgraph from large
volumes of raw data is a significant challenge. Extracted
graphs are also highly irregular and have only a low degree
of locality than traditional graphs derived from physical
topologies. This stresses traditional hierarchical memory
subsystems as well.

We present a hybrid system of a MapReduce cluster and a
highly multithreaded system as an effective tool to address
the challenges in large scale complex network analysis
problems (see [2]). To demonstrate the effectiveness of the
proposed hybrid system, we solve a challenge problem
using three different platforms: a MapReduce cluster, a
highly multithreaded system, and the hybrid combination of
the two. Our challenge problem first extracts a subgraph of
interest from a larger graph to capture the challenge in
processing large volumes of data, and finds single-pair
shortest paths in the extracted subgraph to capture the
challenge in traversing irregular graphs. We analyze the
match between the problem and the three different
platforms via algorithm and system level analyses and also
by experiments. The MapReduce cluster and the highly
multithreaded system reveal limitations in -efficiently
solving our problem, whereas the hybrid system exploits
the strengths of the two in a synergistic way and solves the
problem at hand.

A MapReduce Cluster

The MapReduce programming model lowers the
programming complexity in using a cluster, but this model
may not work well for every workload. Here, we analyze
its match to our problem.

MapReduce computation often requires multiple iterations
of the map, shuffle, sort, and reduce phases. We can use a
directed acyclic graph (DAG) to find the minimum number
of iterations to solve a problem. Assume the vertices in

each level are the partitioned data chunks for the
corresponding MapReduce iteration, and there is a directed
edge between two vertices if the target vertex is dependent
on the source vertex (see Figure 1). Then, the depth of the
DAG is equal to the minimum number of required
MapReduce iterations.

S = 2N

OO0

Figure 1: A directed acyclic graph (DAG) for MapReduce.

If we know the minimum number of MapReduce iterations
to solve a problem and the amount of work in each
iteration, we can compute the work complexity. The
following equation captures this work complexity.

k

Z (O(n;+nf +nf;r)+p,Sort(nf/p,))

i=1
k: a number of MapReduce iterations
n;: the input data size for the i, itheration

fi: the output data size
i

" the input data size

the output data size ;
r: - P - for the i, reduce phase
the input data size

p.: a number of reducers

for the i, map phase

Under our optimality criterion, a MapReduce algorithm is
efficient if its work complexity is equal to that of the best
sequential algorithm. A MapReduce cluster can extract a
subgraph using an efficient algorithm but our analysis
reveals that finding shortest paths requires significantly
more work than the best sequential algorithm.

If the shuffle phase takes less than the map phase, the
shuffle phase does not affect the overall execution time as it
can be overlapped with the map phase. This is especially
true when f; is small as this reduces the communication
volume, and is the case for the subgraph extraction.
However, if f; is large, the interconnection network becomes
a bottleneck especially for large clusters with the
sublinearly scaling bisection bandwidth. Finding shortest
paths falls into this case. Disk I/O overhead is unavoidable
if the input data overflows the main memory capacity or we
need non-volatile storage. An extracted subgraph, however,
has a higher chance to fit into the main memory using the
sparse representation. The currently available MapReduce
runtime systems (Google MapReduce and Hadoop) use

disks to save even temporary data and disk I/O overhead
becomes significant in finding shortest paths.

A Highly Multithreaded System

A highly multithreaded system, with the shared memory
programming model, supports random memory accesses
with an effective latency hiding mechanism. These systems
often have a relatively high bisection bandwidth for the
system size to support a large number of irregular accesses
as well. However, linearly scaling the bisection bandwidth
increases the system cost superlinearly, and this limits the
size of many highly multithreaded systems. This type of
system is efficient for finding shortest paths in the extracted
subgraph, but the limitation in system size becomes
substantial in storing a large graph and extracting a
subgraph from the large graph.

The Hybrid Combination
The following figure illustrates the proposed hybrid system.

A small number of tightly
connected highly multithreaded
processors

A large number of loosely
connected off-the shelf computers

with large aggregate disk capacity
9 and 1/0 bandwidth

Sssss

Figure 2: The proposed hybrid system.

The hybrid system connects a MapReduce cluster and a
highly multithreaded system to effectively address the
distinct computational challenges in large scale complex
network analysis. Switching from one system to another to
address the distinct computational requirements can reduce
the execution time in each step but requires additional data
transfer. The hybrid system becomes effective if switching
from one to another saves more time than the data transfer
overhead. The following equation captures this point.
k

Thybrid=z min (Ti,MupReduce + A’ Ti,hml+ A)
i=1
k: a number of computational steps
T and T, the time complexities of the

i, MapReduce i, hmt :
i, step on a MapReduce cluster and a highly

multithreaded system, respectively.
A: n,/BW, X6&(i—1,i)

inter

n;: the input data size for the i, step
BW,..,: the interconnection network banwidth
§(i—1,i): 0 if selected platforms for the i—1, and

i, steps are same. 1, if different.

In our problem, the size of an extracted graph is much
smaller than the input data size. This reduces the overhead
in loading the subgraph from a MapReduce cluster to a
highly multithreaded system. A MapReduce cluster requires
significantly more work to find shortest paths than a highly
multithreaded system and also incurs disk I/O overhead.

Extracting a subgraph using a MapReduce cluster and
finding shortest paths using a highly multithreaded system
in the hybrid setting becomes effective as a result.

Experimental Results

We use an R-MAT graph with 4.29 billion vertices and and
275 billion edges (7.4 TB in text) as an input graph and
extract a subgraph that covers 10% of the vertices in the
input graph. Then, we find single-pair shortest paths in the
extracted subgraph up to 30 pairs. Our MapReduce cluster
has 4 nodes and 4 dual core AMD Opteron processors in
each node and has 96 1 TB disks. Our highly multithreaded
system has a single socket Sun Microsystems UltraSparc T2
processor and 32 GB main memory. The highly
multithreaded system fails to solve the problem as the input
data overflows its capacity. Table 1 summarizes the
comparison between the MapReduce cluster and the hybrid
system.

Table 1: Execution time to solve our problem.

MapReduce Hybrid
subgraph 239 hours | 23.9 hours
extraction
memory loading - 0.832 hours
finding shortest
paths (for 30| 103 hours 2.6 seconds
pairs)

The hybrid systems outperforms the MapReduce cluster by
far in the experiments. In particular, once the subgraph is
extracted and loaded into the main memory, the hybrid
system analyzes the subgraph five orders of magnitude
faster than the MapReduce cluster. Using a larger
MapReduce cluster and a faster interconnection technology
may significantly reduce the graph extraction time and the
memory loading time, respectively. However, reducing the
time to find shortest paths is much more challenging due to
its high communication requirements, and this further
highlights the effectiveness of the proposed hybrid system
in large scale complex network analysis.

References

[1] R. Albert, H. Jeong, and A.-L. Barabasi, “Error and attack
tolerance of complex networks,” Nature, 406:378-382, 2000.

[2] S. Kang and D. A. Bader, “Large Scale Complex Network
Analysis Using the Hybrid Combination of a MapReduce
Cluster and a Highly Multithreaded System,” Workshop on
Multithreaded Architectures and Applications (MTAAP),
Atlanta, GA, April, 2010.

