
Flexible Filters for
High PerformanceHigh Performance

Embedded Computing
Rebecca Collins and Luca Carloni
Department of Computer ScienceDepartment of Computer Science

Columbia University

MotivationMotivation

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Stream ProgrammingStream Programming

CBA

• Stream Programming model• Stream Programming model
– filter: a piece of sequential programming
– channels: how filters communicate
– token: an indivisible unit of data for a filter

• Examples: Signal processing, image processing,
embedded applicationsembedded applications

Example: Constant False-Alarm
R (CFAR) D iRate (CFAR) Detection

guard cells cell under testguard cells cell under test

ith dditi l f tcompare to with additional factors
• number of gates
• threshold (μ)
• number of guard cellsHPEC Challenge • number of guard cells
• rows and other dimensional

data
http://www.ll.mit.edu/HPECchallenge/

HPEC Challenge

CFAR Benchmark
uInt to right left align find

CFAR Benchmark
uInt to
float square right

window
left

window

add

align
data

find
targets

add

Data Stream:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CFAR Benchmark
uInt to right left align find1

CFAR Benchmark
uInt to
float square right

window
left

window

add

align
data

find
targets1

add

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CFAR Benchmark
uInt to right left align find2 1

CFAR Benchmark
uInt to
float square right

window
left

window

add

align
data

find
targets2 1

add

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CFAR Benchmark
uInt to right left align find

1

23 1

CFAR Benchmark
uInt to
float square right

window
left

window

add

align
data

find
targets23 1

add

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CFAR Benchmark
uInt to right left align find1

67891011

231213

CFAR Benchmark

cell under test

uInt to
float square right

window
left

window

add

align
data

find
targets123910111213

8

cell under test add

right
window

left
window

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

do

CFAR Benchmark
uInt to right left align find1

67891011

231213

CFAR Benchmark

cell under test

uInt to
float square right

window
left

window

add

align
data

find
targets123910111213

8
tcell under test add

right
window

left
window

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

do

t

CFAR Benchmark
uInt to right left align find1

7891011

231213

CFAR Benchmark

cell under test

uInt to
float square right

window
left

window

add

align
data

find
targets123910111213

8
t6

cell under test add

right
window

left
window

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

do

t

MappingMapping

CBA

MappingMapping

1 2 3core 1 core 2 core 3

CBA

Th h t t fA B C Throughput: rate of
processing data tokens

A B C

multi-core chip

MappingMapping

1 3core 1 core 3

CBA

Th h t t fA C Throughput: rate of
processing data tokens

A
B

C

multi-core chip

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

“wait”

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Unbalanced Flow

1 2 3

Unbalanced Flow

core 1 core 2 core 3

CBA

“wait”

• Bottlenecks reduce throughput
Caused by backpressure– Caused by backpressure
• inherent algorithmic imbalances
• data dependent computational spikes• data-dependent computational spikes

Data Dependent Execution Time:
CFARCFAR

• Using Set 1 from the HPEC
1.3 % targets

35

CFAR Kernel Benchmark
• Over a block of about 100

cells 15
20
25
30

Pe
rc

en
t

• Extra workload of 32
microseconds per target 0

5
10

2 128 254 380 506

P

7.3 % targets
15

Execution Time (microseconds)

0.3 % targets
80

5

10

Pe
rc

en
t

20

40

60
Pe

rc
en

t

0
0 96 192 288 384 480 576

Execution Time (microseconds)

0

20

2 128 255 381 508
Execution Time (microseconds)

Data Dependent Execution TimeData Dependent Execution Time

Some other examples:p
• Bloom Filters (Financial, Spam detection)
• Compression (Image processing)

7
8
9

3
4
5
6

Pe
rc

en
t

0
1
2
3

0.000 0.001 0.002 0.003 0.004 0.005

Execution Time(s)

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Our Solution: Flexible FiltersOur Solution: Flexible Filters

1 2 3

flex-split flex-merge

BA C
core 1 core 2 core 3

C

• Unused cycles on B are filled by working ahead on
filter C with the data already present on B
Push stream flow upstream of a bottleneck• Push stream flow upstream of a bottleneck

• Semantic Preservation

Related WorksRelated Works

• Static Compiler Optimizations• Static Compiler Optimizations
– StreamIt [Gordon et al, 2006]

• Dynamic Runtime Load Balancing
W k St li /Filt Mi ti– Work Stealing/Filter Migration

• [Kakulavarapu et al., 2001]
• Cilk [Frigo et al., 1998]
• Flux [Shah et al 2003]• Flux [Shah et al., 2003]
• Borealis [Xing et al., 2005]

– Queue based load balancing
• Diamond [Huston et al 2005] distributed search queue based load• Diamond [Huston et al., 2005] distributed search, queue based load

balancing, filter re-ordering

• Combination Static+Dynamic
– FlexStream [Hormati et al., 2009] multiple competing programsFlexStream [Hormati et al., 2009] multiple competing programs

OutlineOutline

• IntroductionIntroduction
• Design Flow of a Stream Program with

FlexibilityFlexibility
• Performance
• Implementation of Flexible Filters
• Experimentsp

– CFAR Case Study

Design Flow of a Stream Program
ith Fl ibl Filtwith Flexible Filters

Design streamDesign stream
algorithm

Mapping
• Filters

• Memory

Profile

Add Flexibility
to Bottlenecks

Profile of CFAR filters on Cell

right window

uIntToFloat

compiler/
design tools

0 1 2 3 4 5

find targets

add

Average Execution Time (microseconds) per 100 tokens

Design ConsiderationsDesign Considerations

Design streamDesign stream
algorithm

Mapping
• Filters

• Memory

Profile

Add Flexibility
to Bottlenecks

Design ConsiderationsDesign Considerations

Design streamDesign stream
algorithm

Mapping
• Filters

• Memory

Profile

Add Flexibility
to Bottlenecks

Design ConsiderationsDesign Considerations

Design streamDesign stream
algorithm

Mapping
• Filters

• Memory

Profile

Add Flexibility
to Bottlenecks

Adding FlexibilityAdding Flexibility

Design streamDesign stream
algorithm

Mapping
• Filters

• Memory

Profile

Add Flexibility
to Bottlenecks

Adding FlexibilityAdding Flexibility

Design streamDesign stream
algorithm

Mapping
• Filters

• Memory

Profile

Add Flexibility
to Bottlenecks

Adding FlexibilityAdding Flexibility

Design streamDesign stream
algorithm

Mapping
• Filters

• Memory

Profile

Add Flexibility
to Bottlenecks

Adding FlexibilityAdding Flexibility

Design streamDesign stream
algorithm

Mapping
• Filters

• Memory

Profile

Add Flexibility
to Bottlenecks

OutlineOutline

• IntroductionIntroduction
• Design Flow of a Stream Program with

FlexibilityFlexibility
• Performance
• Implementation of Flexible Filters
• Experimentsp

– CFAR Case Study

Mapping Stream Programs
M l i C Pl fto Multi-Core Platforms

BA CBA C
core 1 core 2 core 3

core 1

BA Cpipeline mapping
core 2

BA C

core 1 core 3core 2

BA CBA C

SPMD mappingsharing a core

Throughput: SPMD MappingThroughput: SPMD Mapping

BA C
core 1

1

BA C
t0 t1 t2 t3 t4 t5 t6

core 1

core 2

2 BA C
core 2

core 3
core 3

2

BA C

SPMD i
3 tokens processed in 7 timesteps,
ideal throughput = 3/7 = 0 429

3

SPMD mapping ideal throughput = 3/7 = 0.429

Throughput: SPMD MappingThroughput: SPMD Mapping

BA C Suppose EA = 2, EB = 2, EC = 3
core 1

1 EA=2 EB=2 EC=3

BA C
t0 t1 t2 t3 t4 t5 t6

core 1

core 2

2 BA C
core 2

core 3
core 3

2

BA C

SPMD i
3 tokens processed in 7 timesteps,
ideal throughput = 3/7 = 0 429

3

SPMD mapping ideal throughput = 3/7 = 0.429

Throughput: SPMD MappingThroughput: SPMD Mapping

BA C Suppose EA = 2, EB = 2, EC = 3
core 1

1 EA=2 EB=2 EC=3

BA C
t0 t1 t2 t3 t4 t5 t6

core 1 A1

core 2

2 BA C
core 2

core 3

A1

A2

A3
core 3

2

BA C

SPMD i

A3

3 tokens processed in 7 timesteps,
ideal throughput = 3/7 = 0 429

3

SPMD mapping ideal throughput = 3/7 = 0.429

Throughput: SPMD MappingThroughput: SPMD Mapping

BA C Suppose EA = 2, EB = 2, EC = 3
core 1

1 EA=2 EB=2 EC=3

BA C
t0 t1 t2 t3 t4 t5 t6

core 1 A1 B1

core 2

2 BA C
core 2

core 3

A1

A2

A3

B1

B2

B3
core 3

2

BA C

SPMD i

A3 B3
3

SPMD mapping

Throughput: SPMD MappingThroughput: SPMD Mapping

BA C Suppose EA = 2, EB = 2, EC = 3
core 1

1 EA=2 EB=2 EC=3

BA C
t0 t1 t2 t3 t4 t5 t6

core 1 A1 B1 C1

core 2

2 BA C
core 2

core 3

A1

A2

A3

B1

B2

B3

C1

C2

C3
core 3

2

BA C

SPMD i

A3 B3 C3

3 tokens processed in 7 timesteps,
ideal throughput = 3/7 = 0 429

3

SPMD mapping ideal throughput = 3/7 = 0.429

Throughput: Pipeline MappingThroughput: Pipeline Mapping

CBA
core 1 core 2 core 3

latency 2 latency 2 latency 3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1core 1
core 2
core 3core 3

Throughput: Pipeline MappingThroughput: Pipeline Mapping

CBA
core 1 core 2 core 3

1

latency 2 latency 2 latency 3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1 A1core 1
core 2
core 3

A1

core 3

Throughput: Pipeline MappingThroughput: Pipeline Mapping

CBA
core 1 core 2 core 3

1 12

latency 2 latency 2 latency 3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1 A1 A2core 1
core 2
core 3

A1 A2
B1

core 3

Throughput: Pipeline MappingThroughput: Pipeline Mapping

CBA
core 1 core 2 core 3

1 12 123

latency 2 latency 2 latency 3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1 A1 A2 A3core 1
core 2
core 3

A1 A2
B1

C1
B2
A3

core 3 C1

Throughput: Pipeline MappingThroughput: Pipeline Mapping

CBA
core 1 core 2 core 3

1 12 123 234

latency 2 latency 2 latency 3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1 A1 A2 A3 A4core 1
core 2
core 3

A1 A2
B1

C1
B2
A3

C2
B3
A4

core 3 C1 C2
throughput = 1/3 = 0.333 < 0.429

Data BlocksData Blocks

CBA
core 1 core 2 core 3

CBA

C

data block: group of data tokens

Data BlocksData Blocks

CBA
core 1 core 2 core 3

CBA

C

data block: group of data tokens

Data BlocksData Blocks

CBA
core 1 core 2 core 3

CBA

C

data block: group of data tokens

Data BlocksData Blocks

CBA
core 1 core 2 core 3

CBA

C

data block: group of data tokens

Data BlocksData Blocks

CBA
core 1 core 2 core 3

CBA

C

data block: group of data tokens

Data BlocksData Blocks

CBA
core 1 core 2 core 3

CBA

C

data block: group of data tokens

Data BlocksData Blocks

CBA
core 1 core 2 core 3

CBA

C

data block: group of data tokens

Data BlocksData Blocks

CBA
core 1 core 2 core 3

CBA

C

data block: group of data tokens

Data BlocksData Blocks

CBA
core 1 core 2 core 3

CBA

C

data block: group of data tokens

Throughput: Pipeline Augmented
with Flexibilitywith Flexibility

core 1 core 2 core 3

CBA

C

1 1

C

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1core 1
core 2
core 3core 3

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented
with Flexibilitywith Flexibility

core 1 core 2 core 3

CBA

C

1

C

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1 A1core 1
core 2
core 3

A1

core 3

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented
with Flexibilitywith Flexibility

core 1 core 2 core 3

CBA

C

1 12

C

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1 A1 A2core 1
core 2
core 3

A1 A2
B1

core 3

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented
with Flexibilitywith Flexibility

core 1 core 2 core 3

CBA

C

1 12 123

C

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1 A1 A2 A3core 1
core 2
core 3

A1 A2
B1

C1
B2
A3

core 3 C1
throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented
with Flexibilitywith Flexibility

core 1 core 2 core 3

CBA

C

1 12 123

C

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1 A1 A2 A3core 1
core 2
core 3

A1 A2
B1

C1
B2
A3

C2
core 3 C1

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented
with Flexibilitywith Flexibility

core 1 core 2 core 3

CBA

C

1 12 123 234

C

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

core 1 A1 A2 A3 A4core 1
core 2
core 3

A1 A2
B1

C1
B2
A3

C2
B3
A4

C2
core 3 C1 C2

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

OutlineOutline

• IntroductionIntroduction
• Design Flow of a Stream Program with

FlexibilityFlexibility
• Performance
• Implementation of Flexible Filters
• Experimentsp

– CFAR Case Study

Flex-SplitFlex Split
Flex-split core 2 core 3p

pop data block b from in

n0 = available space on out0

n1 |b| n0
CB

core 2 core 3

n1 = |b| - n0

send n0 to out0, n1 to out1

send n0 0’s, then n1 1’s to
l

C
select

select

flex split flex mergeC out

out1

in0

in1

out0in

C
out1

 maintain ordering
 based on run-time state of queues

Flex-MergeFlex Merge
Flex-merge core 2 core 3g

pop i from select

if i is 0, pop token from in0

if i is 1 pop token from in1
CB

core 2 core 3

if i is 1, pop token from in1

push token to out

C

select

flex split flex mergeC out

out1

in0

in1

out0in

C
out1

Flex-MergeFlex Merge
Flex-merge core 2 core 3g

pop i from select

if i is 0, pop token from in0

if i is 1 pop token from in1
CB

core 2 core 3

if i is 1, pop token from in1

push token to out

C

select

flex split flex mergeC out

out1

in0

in1

out0in Overhead of Flexibility?
C

out1

Multi-Channel
Fl S li d Fl MFlex-Split and Flex-Merge

output channel 1

filter

output channel 2

…
output channel n

Multi-Channel
Fl S li d Fl MFlex-Split and Flex-Merge

flex merge output channel 1

flex split filter
flex merge output channel 2

…
flex merge output channel n

Multi-Channel
Fl S li d Fl MFlex-Split and Flex-Merge

flex merge output channel 1

flex split filter
flex merge output channel 2

…filterflex

flex merge output channel n

Multi-Channel
Fl S li d Fl MFlex-Split and Flex-Merge

flex merge output channel 1

flex split filter
flex merge output channel 2

…filterflex

select
flex merge output channel n

Multi-Channel
Fl S li d Fl MFlex-Split and Flex-Merge

i h l 1
filter

…
input channel 1

input channel 2

input channel n

Multi-Channel
Fl S li d Fl MFlex-Split and Flex-Merge

i h l 1
filter

…
input channel 1

input channel 2
flex merge

flex split

Centralized

filterflexinput channel n

select

Multi-Channel
Fl S li d Fl MFlex-Split and Flex-Merge

i h l 1
filter

…
input channel 1

input channel 2
flex merge

flex split

Centralized

filterflexinput channel n

select

filter
input channel 1

flex merge
flex split

Distributed

filter

… filterflex

input channel 2
flex merge

β flex split

te flex
input channel n β flex split

select

OutlineOutline

• IntroductionIntroduction
• Design Flow of a Stream Program with

FlexibilityFlexibility
• Performance
• Implementation of Flexible Filters
• Experimentsp

– CFAR Case Study

Cell BE ProcessorCell BE Processor
• Distributed Memoryy
• Heterogeneous

– 8 SIMD (SPU) cores
– 1 PowerPC (PPU)

• Element Interconnect
BBus
– 4 rings
– 205 Gb/s– 205 Gb/s

• Gedae Programming Language
Communication Layery

GedaeGedae
• Commercial data-flow language and programming GUI
• Performance analysis tools• Performance analysis tools

CFAR BenchmarkCFAR Benchmark
uInt to right left align finduInt to
float square right

window
left

window

add

align
data

find
targets

add

Profile of CFAR filters on Cell

right window

uIntToFloat

find targets

add

0 1 2 3 4 5
Average Execution Time (microseconds) per 100 tokens

Data DependencyData Dependency
• By changing threshold, change % targets

– 1.3 %
– 7.3 %

• Additional workload per target
– 16 µs
– 32 µs
– 64 µs

% T t

1.3 7.3

% Targets

16 μs 0.82 1.45
32 μs 1.06 1.39
64 1 27 1 47

Additional
Workload

64 μs 1.27 1.47

More BenchmarksMore Benchmarks
Benchmark Field Results

Dedup
Information

Theory
Rabin block/ max chunk size Speedup

4096/512 2.00

JPEG Image
Processing

Image width x height
128x128
256 256

1.31
1 16Processing 256x256

512x512
1.16
1.25

stocks/walks/timesteps
Value-at-

Risk
Finance 16/1024/1024

64/1024/1024
128/1024/1024

0.98
1.56
1.55

ConclusionsConclusions

• Flexible filters
– adapt to data dependent bottlenecks
– distributed load balancing
– provide speedup without modification to

original filters
– can be implemented on top of general

stream languages

