Flexible Filters for

Hinhh Parfarmanecaoa
| | llsll I iiIWViIiIIIdAIIT VvVvVY

Embedded Computing

Rebecca Collins and Luca Carloni
Department of Computer Science
Columbia University

Motivation

e

Call Log

Stream Programming

e

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

_>A

Stream Programming

e

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

@ — A

Stream Programming

e

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

@ — A

Stream Programming

e

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

@ — [

Stream Programming

@ — A

o~

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

Stream Programming

o

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

_>‘

Stream Programming

o

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

_>Q

Stream Programming

_>A

SN E

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

Stream Programming

o

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

_>A

Stream Programming

=

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

_>A

Stream Programming

e

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

_>A

Stream Programming

e

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

_>A

Stream Programming

e

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

_>A

Stream Programming

e

o Stream Programming model
— filter: a piece of sequential programming
— channels: how filters communicate
— token: an indivisible unit of data for a filter

« Examples: Signal processing, image processing,
embedded applications

_>A

Example: Constant False-Alarm
Rate (CFAR) Detection

guard cells cell under test

compare with additional factors
 number of gates

 threshold (p)
HPEC Challenge « number of guard cells

http://www.Il.mit.edu/HPECchallenge/ * rows a:dt other dimensional
datla

CFAR Benchmark

window window

float 9

Data Stream:

2

3

left }

>
~
| <A

11

e
u

s
u

align find
data targets

CFAR Benchmark
w::\gdhc:w wiLe(:Lw} @

ﬂ dd
Bz

>
~
| <A

CFAR Benchmark

ulo right left } align find
ttz:l sc.e window window data targets

dd
uu

>
~
| <A

CIEIE 2 S

CFAR Benchmark

ight left]
ZTeJ_'-ndow window

align find
data targets

> add '—
aAauu

11

{01

CFAR Benchmark

cell under test

>
a

J

left right
window window
2|3 11

BT

e
u

MN33a3

s
u

align find
data targets

CFAR Benchmark
11J0p b [TB]

] : align find
‘e SMWQEZI} P

_ _ i ____ _1__ __ 4 __ _d > QAA
cell unaer test > aaa | t

>
left right
window window
/ /

t

Jand

CFAR Benchmark

cell under test

>
a

left
wind

2

window

Jand

right
ow
3 11
/ /

J

BT

e

t

S

@033

e
u

s
u

align
data

Mapping

i

Mapping

core 1

Throughput: rate of
processing data tokens

multi-core chip

Mapping

core 1

Throughput: rate of
processing data tokens

multi-core chip

Unbalanced Flow

B —

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

B —

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

B —

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

B —

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

o

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

e

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

oo

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

o8 —

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

B0 —

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Unbalanced Flow

 Bottlenecks reduce throughput
— Caused by backpressure
* inherent algorithmic imbalances
« data-dependent computational spikes

Data Dependent Execution Time:
CFAR

] 1.3 % targets
 Using Set 1 from the HPEC 35
CFAR Kernel Benchmark 30 1
25 -
» Over a block of about 100 £ 50 -
cells 5 151 _
e Extra workload of 32 o
microseconds per target 04 -
2 128 254 380 506
Execution Time (microseconds)
7.3 % targets
0.3 % targets
80
60
g
O 40 -
&
20 -
0 T I_I T T T T T T T T T T T T T T T
0 96 192 288 384 480 576 2 128 255 381 508

Execution Time (microseconds) Execution Time (microseconds)

Data Dependent Execution Time

Some other examples:
 Bloom Filters (Financial, Spam detection)
« Compression (Image processing)

Percent
O = NWPL, OO N 0O

0.000 0.001 0.002 0.003 0.004 0.005

Execution Time(s)

Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

Unused cycles on B are filled by working ahead on
filter C with the data already present on B

Push stream flow upstream of a bottleneck
Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation

Related Works

o Static Compiler Optimizations
— Streamlt [Gordon et al, 2006]

« Dynamic Runtime Load Balancing
— Work Stealing/Filter Migration
» [Kakulavarapu et al., 2001]
» Cilk [Frigo et al., 1998]
* Flux [Shah et al., 2003]
» Borealis [Xing et al., 2005]
— Queue based load balancing

 Diamond [Huston et al., 2005] distributed search, queue based load
balancing, filter re-ordering

« Combination Static+Dynamic
— FlexStream [Hormati et al., 2009] muiltiple competing programs

Outline

Design Flow of a Stream Program with
Flexibility

Performance

Implementation of Flexible Filters

Experiments
— CFAR Case Study

Design Flow of a Stream Program
with Flexible Filters

Design stream

algorithm
Mapping
> Filters
« Memory
Profile
Add Fle"xibility E ljlnt-I-o':loatProfile of CFAR filters on Cell /
to BOttIeneCks E right window

compiler/ A
- Average Execution Time (microseconds) per 100 tokens
design tools

Design Considerations

Design stream
algorithm

Mapping

e Filters
* Memo

Profile

Add Flexibility

to Bottlenecks

Design Considerations

Design stream
algorithm

Mapping

e Filters
* Memo

Profile

Add Flexibility

to Bottlenecks

Design Considerations

Design stream
algorithm

Mapping

e Filters
* Memo

Profile

Add Flexibility
to Bottlenecks

—{ [[

Adding Flexibility

Design stream
algorithm

Mapping
 Filters
* Memory i

Profile

Add Flexibility
to Bottlenecks

Adding Flexibility

Design stream
algorithm

Map"ping

 Filters
* Memory

Add Flexibility

to Bottlenecks

Adding Flexibility

Design stream
algorithm

Map"ping

 Filters
* Memory

Profile

Add Flexibility
to Bottlenecks

Adding Flexibility

Design stream
algorithm

Map"ping
 Filters
* Memory

Add Flexibility
to Bottlenecks

Outline

 Performance
 Implementation of Flexible Filters

 Experiments
— CFAR Case Study

Mapping Stream Programs
to Multi-Core Platforms

_;A

B—C—

pipeline mapping

_;A

—B—iC—

sharing a core

11

SPMD mapping

Throughput: SPMD Mapping

— A

1

t0

t1

t2

t3

t4

t5

t6

core 1

core 2

core 3

SPMD mapping

3 tokens processed in 7 timesteps,

ideal throughput = 3/7 = 0.429

Throughput: SPMD Mapping

Suppose E,=2,E;=2,E. =3

— E,=2 — Eg=2 - E.=3 —

t0 (t1 |t2 |t3 |[t4 |[t5 |16

core 2

core 3

— A —».—».—» core 1

— A

3 tokens processed in 7 timesteps,

SPMD mapping ideal throughput = 3/7 = 0.429

Throughput: SPMD Mapping

— E,=2 — Eg=2 - E.=3 —

— A PIBI-E—
~B-C—

— A

SupposeE,=2,Eg=2,E. =3

t0 |t1 [t2 (t3 |t4 |t5 |t6
core 1 A1
core 2 A:2
core 3 Ai3

SPMD mapping

3 tokens processed in 7 timesteps,

ideal throughput = 3/7 = 0.429

Throughput: SPMD Mapping

— E,=2 ~ Eg=2 - E.=3 —

— A

— A

~B €
~B €

Suppose E,=2,E;=2,E. =3

t0

t1

t4

t5

t6

t2 t3

core 1 A1
core 3 AI3 -

SPMD mapping

Throughput: SPMD Mapping

— E,=2 — Eg=2 - E.=3 —

— A

— A

~B €
~B €

SupposeE,=2,Eg=2,E. =3

t0 |t1 |t2 [t3 (t4 [t5 |t6
core 1 A1 ﬁ _
core 2 A:2 - _
core 3 Ai3 - _

SPMD mapping

3 tokens processed in 7 timesteps,
ideal throughput = 3/7 = 0.429

Throughput: Pipeline Mapping

A
latency 2 latency 2 latency 3
to t1 (t2 [t3 |t4 |15 t6 |t7 t8 t9
core 1
core 2

core 3

Throughput: Pipeline Mapping

1A — [B— e
latency 2 latency 2 latency 3
to t1 (t2 [t3 |t4 |15 t6 |t7 t8 t9
core 1 A1
core 2

core 3

Throughput: Pipeline Mapping

—z A — B e
latency 2 latency 2 latency 3
to t1 (t2 [t3 |t4 |15 t6 |t7 t8 t9
core 1 A1 A2
core 2 . B1 |

core 3

Throughput: Pipeline Mapping

sla bl
latency 2 latency 2 latency 3
t0 t1 t2 t3 t4 t5 t6 |t7 t8 t9
core 1 A1 A2 A3
core 3

Throughput: Pipeline Mapping

—e A — il
latency 2 latency 2 latency 3
to t1 (t2 [t3 |t4 |15 t6 |t7 t8 t9
core 1 A1 A2 A3 A4
core 3 _c2 |

throughput = 1/3 = 0.333 < 0.429

Data Blocks

data block: group of data tokens

Data Blocks

data block: group of data tokens

Data Blocks

data block: group of data tokens

Data Blocks

QC
AT

data block: group of data tokens

Data Blocks

data block: group of data tokens

Data Blocks

data block: group of data tokens

Data Blocks

data block: group of data tokens

Data Blocks

data block: group of data tokens

Data Blocks

data block: group of data tokens

Throughput: Pipeline Augmented

with Flexibility

= L 1 e
t0 t1 |t2 (t3 (t4 |[t5 t6 |t7 t8 t9

core 1

core 2

core 3

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented

with Flexibility

—hi] A I
t0 t1 |t2 (t3 (t4 |[t5 t6 |t7 t8 t9

core 1 A1l

core 2

core 3

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented

with Flexibility

—2| A 1] e
t0 t1 t2 t3 t4 t5 t6 |t7 t8 t9
core 1 Al | A2
core 2 - B1 |
core 3

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented

with Flexibility

3| A —2 18—
t0 t1 t2 t3 t4 t5 t6 |t7 t8 t9
core 1 Al | A2 | A3

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented

with Flexibility

3| A —2 1 e —
t0 t1 t2 t3 t4 t5 t6 |t7 t8 t9
core 1 Al | A2 | A3
ooz A RN B
core 3

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Throughput: Pipeline Augmented

with Flexibility

4 A —s {2 88—
t0 t1 t2 t3 t4 t5 t6 |t7 t8 t9

core 1 Al | A2 | A3 A4

ooz | TSN G2 Ea

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)

Outline

 Implementation of Flexible Filters

 Experiments
— CFAR Case Study

Flex-Split

Flex-split
pop data block b from in
n0 = available space on out0
nl = |b| - n0

send n0 to out0, nl to outl

send n0 0’s, then nl 1’s to
select

select

in out
<« fleX merge puummn

in1

v maintain ordering
v based on run-time state of queues

Flex-Merge

Flex-merge

pop i1 from
is O,
is 1,

token

select

pop token from in0O

m— [R, [, i N = == "1
POp tokKemn rrom inlt

to out

in

select

out

<« fleX merge puummmn

Flex-Merge

Flex-merge
pop i1 from select
if i is 0, pop token from inO
if 1 is 1, pop token from inl

push token to out

select

/////’/”—7 ‘~§\\\\\\\\

Overhead of Flexibility?

in

Multi-Channel
Flex-Split and Flex-Merge

output channel 1

—| filter

output channel 2

output channel n

Multi-Channel
Flex-Split and Flex-Merge

flex split

—>| filter

flex merge

— output channel 1

flex merge

— output channel 2

flex merge

— output channel n

flex split

Multi-Channel
Flex-Split and Flex-Merge

flex merge

filter

— output channel 1

flex merge

— output channel 2

N

filter;,,

flex merge

— output channel n

flex split

Multi-Channel
Flex-Split and Flex-Merge

filter

select

flex merge

1

— output channel 1

flex merge

» output channel 2

N

filter;,,

1

flex merge

» output channel n

|

Multi-Channel
Flex-Split and Flex-Merge

input channel 1

—

—
Input channel 2 /
Input channel n

filter >

input channel 1 \

Input channel 2 <}

Input channel n /

Multi-Channel
Flex-Split and Flex-Merge

Centralized

flex split

—

filter

filter;,,

>

7

flex merge

A

select

input channel 1 \ Centralized
Input channel 2 <}

Input channel n /

Multi-Channel
Flex-Split and Flex-Merge

filter

=

flex split

filter;,,

>

7

flex merge

A

select

Distributed

Input channel 1 —

flex split

Input channel 2

B flex split

input channel n

> B flex split

ﬁ

filter

filter;,,

> flex merge

A

select

Outline

 Experiments
— CFAR Case Study

Cell BE Processor

Distributed Memory

Heterogeneous
— 8 SIMD (SPU) cores
— 1 PowerPC (PPU)

Element Interconnect

Bus

— 4 rings
— 205 Gb/s
Gedae Programming Language
Communication Layer

C
P

Gedae

o Gedae Toolbar <@throgmorten.c — X

r

File

Edit

Miew 3 Stats

0.196763850 s

0,188022467 =

0,205574171 s
+0.007163 s

client.
104
103

102

101
100
default

synchronizat

time conver

CommP: Time synchr

nversion: t'
Gedae: Time synchroniz

Gedae: Time synchro
synchronizati
time conversion: t'
Gedae: Time synchroniz
synchr
time

Gedae: Time synchroniz
synchronization a

File

Application

File Application

input files

output files

string timingfile

Glossary of Abbreviations

View Options

inpLt parameters
1

nbim - number of beams (dimension of the data cube
CFAR_benchmark.cfar <@throgmorten.cs.columbia.edu=

CFAR_benchmark <@throgmorten.cs.columbia.edu=

LUtilities Cantrol

cubefi e [targats
el
nbm

nefar
ndop.
g
e

ommercial data-flow language and programming GUI
erformance analysis tools

throgmorten :

103:

readFromfile

uintToF loat

[ubefile Nane| out

-- rebeccascfar/ofar | [

Search

Statust

—»[in

out.

right window left window
ruindow Tuindow
in Jout P in Jout
= |ncfar |sum = |ncfar [sum | —7
— [nrg — [nrg
—lgcl | 15

—

state [findTargets
| cut [block target

SUm B
ncfar
g
acl

add

in_right [out

in_left

nofar

gcl

¥

Build Mode 38 7

throgmorten :

4)| Konsole

3

S ="

i

05:51 pm

CFAR Benchmark

square right left }
float q window window

Profile of CFAR filters on Cell

ulntToFloat

right window

add

find targets

0 1 2 3 4 5

Average Execution Time (microseconds) per 100 tokens

Data Dependency

By changing threshold, change % targets

- 13%
- 7.3%
 Additional workload per target
— 16 us
— 32 Us
— 64 us
% Targets
1.3 7.3
16 us 1.45
Additional
Workload 32 us 1.06 1.39
64 us 1.27 1.47

More Benchmarks

Benchmark | Field Results

Information | Rabin block/ max chunk size Speedup

Dedup Theory 4096/512 2.00

Image width x height

JPEG Image 128x128 1.31

Processing 256x256 1.16

512x512 1.25

stocks/walks/timesteps
Value-at- Finance 16/1024/1024
Risk 64/1024/1024 1.56
128/1024/1024 1.55

Conclusions

* Flexible filters
— adapt to data dependent bottlenecks
— distributed load balancing

— provide speedup without modification to
original filters

— can be implemented on top of general
stream languages

