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Example: Constant False-Alarm 
R (CFAR) D iRate (CFAR) Detection 

guard cells cell under testguard cells cell under test

ith dditi l f tcompare to with additional factors
• number of gates
• threshold (μ)
• number of guard cellsHPEC Challenge • number of guard cells
• rows and other dimensional    

data
http://www.ll.mit.edu/HPECchallenge/

HPEC Challenge
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Related WorksRelated Works

• Static Compiler Optimizations• Static Compiler Optimizations
– StreamIt [Gordon et al, 2006]

• Dynamic Runtime Load Balancing
W k St li /Filt Mi ti– Work Stealing/Filter Migration 

• [Kakulavarapu et al., 2001]
• Cilk [Frigo et al., 1998]
• Flux [Shah et al 2003]• Flux [Shah et al., 2003]
• Borealis [Xing et al., 2005]

– Queue based load balancing
• Diamond [Huston et al 2005] distributed search queue based load• Diamond [Huston et al., 2005] distributed search, queue based load 

balancing, filter re-ordering

• Combination Static+Dynamic
– FlexStream [Hormati et al., 2009] multiple competing programsFlexStream [Hormati et al., 2009]  multiple competing programs
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B3
A4

C2
core 3 C1 C2

throughput = 2/5 = 0.4 < 0.429 (but > 0.333)
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Flex-SplitFlex Split
Flex-split core 2 core 3p

pop data block b from in

n0 = available space on out0

n1 |b| n0
CB

core 2 core 3

n1 = |b| - n0

send n0 to out0, n1 to out1

send n0 0’s, then n1 1’s to 
l

C
select

select

flex split flex mergeC out

out1

in0

in1

out0in

C
out1

 maintain ordering
 based on run-time state of queues



Flex-MergeFlex Merge
Flex-merge core 2 core 3g

pop i from select

if i is 0, pop token from in0

if i is 1 pop token from in1
CB

core 2 core 3

if i is 1, pop token from in1

push token to out

C

select

flex split flex mergeC out

out1

in0

in1

out0in

C
out1



Flex-MergeFlex Merge
Flex-merge core 2 core 3g

pop i from select

if i is 0, pop token from in0

if i is 1 pop token from in1
CB

core 2 core 3

if i is 1, pop token from in1

push token to out

C

select

flex split flex mergeC out

out1

in0

in1

out0in Overhead of Flexibility?
C

out1



Multi-Channel 
Fl S li d Fl MFlex-Split and Flex-Merge

output channel 1

filter

output channel 2

…
output channel n



Multi-Channel 
Fl S li d Fl MFlex-Split and Flex-Merge

flex merge output channel 1

flex split filter
flex merge output channel 2

…
flex merge output channel n



Multi-Channel 
Fl S li d Fl MFlex-Split and Flex-Merge

flex merge output channel 1

flex split filter
flex merge output channel 2

…filterflex

flex merge output channel n



Multi-Channel 
Fl S li d Fl MFlex-Split and Flex-Merge

flex merge output channel 1

flex split filter
flex merge output channel 2

…filterflex

select
flex merge output channel n



Multi-Channel 
Fl S li d Fl MFlex-Split and Flex-Merge

i h l 1
filter

…
input channel 1

input channel 2

input channel n



Multi-Channel 
Fl S li d Fl MFlex-Split and Flex-Merge

i h l 1
filter

…
input channel 1

input channel 2
flex merge

flex split

Centralized

filterflexinput channel n

select



Multi-Channel 
Fl S li d Fl MFlex-Split and Flex-Merge

i h l 1
filter

…
input channel 1

input channel 2
flex merge

flex split

Centralized

filterflexinput channel n

select

filter
input channel 1

flex merge
flex split

Distributed

filter

… filterflex

input channel 2
flex merge

β flex split

te flex
input channel n β flex split

select
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Cell BE ProcessorCell BE Processor
• Distributed Memoryy
• Heterogeneous

– 8 SIMD (SPU) cores
– 1 PowerPC (PPU)

• Element Interconnect 
BBus
– 4 rings
– 205 Gb/s– 205 Gb/s

• Gedae Programming Language
Communication Layery



GedaeGedae
• Commercial data-flow language and programming GUI 
• Performance analysis tools• Performance analysis tools



CFAR BenchmarkCFAR Benchmark
uInt to right left align finduInt to
float square right

window
left

window

add

align
data

find
targets

add

Profile of CFAR filters on Cell

right window

uIntToFloat

find targets

add

0 1 2 3 4 5
Average Execution Time (microseconds) per 100 tokens



Data DependencyData Dependency
• By changing threshold, change % targets

– 1.3 % 
– 7.3 % 

• Additional workload per target
– 16 µs
– 32 µs
– 64 µs

% T t

1.3 7.3

% Targets

16 μs 0.82 1.45
32 μs 1.06 1.39
64 1 27 1 47

Additional
Workload

64 μs 1.27 1.47



More BenchmarksMore Benchmarks
Benchmark Field Results

Dedup
Information 

Theory
Rabin block/ max chunk size Speedup

4096/512 2.00

JPEG Image 
Processing

Image width x height
128x128
256 256

1.31
1 16Processing 256x256

512x512
1.16
1.25

stocks/walks/timesteps
Value-at-

Risk
Finance 16/1024/1024

64/1024/1024
128/1024/1024

0.98
1.56
1.55



ConclusionsConclusions

• Flexible filters 
– adapt to data dependent bottlenecks
– distributed load balancing
– provide speedup without modification to 

original filters
– can be implemented on top of general 

stream languages


