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Example: Constant False-Alarm
Rate (CFAR) Detection

guard cells cell under test

compare with additional factors
 number of gates

 threshold (p)
HPEC Challenge « number of guard cells

http://www.Il.mit.edu/HPECchallenge/ * rows a:dt other dimensional
datla
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Data Dependent Execution Time:
CFAR

] 1.3 % targets
 Using Set 1 from the HPEC 35
CFAR Kernel Benchmark 30 1
25 -
» Over a block of about 100 £ 50 -
cells 5 151 _
e Extra workload of 32 o
microseconds per target 04 -
2 128 254 380 506
Execution Time (microseconds)
7.3 % targets
0.3 % targets
80
60
g
O 40 -
&
20 -
0 T I_I T T T T T T T T T T T T T T T
0 96 192 288 384 480 576 2 128 255 381 508

Execution Time (microseconds) Execution Time (microseconds)




Data Dependent Execution Time

Some other examples:
 Bloom Filters (Financial, Spam detection)
« Compression (Image processing)

Percent
O = NWPL, OO N 0O

0.000 0.001 0.002 0.003 0.004 0.005

Execution Time(s)



Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

Unused cycles on B are filled by working ahead on
filter C with the data already present on B

Push stream flow upstream of a bottleneck
Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Our Solution: Flexible Filters

fl7-split flex-merge

4_——

 Unused cycles on B are filled by working ahead on
filter C with the data already present on B

 Push stream flow upstream of a bottleneck
« Semantic Preservation



Related Works

o Static Compiler Optimizations
— Streamlt [Gordon et al, 2006]

« Dynamic Runtime Load Balancing
— Work Stealing/Filter Migration
» [Kakulavarapu et al., 2001]
» Cilk [Frigo et al., 1998]
* Flux [Shah et al., 2003]
» Borealis [Xing et al., 2005]
— Queue based load balancing

 Diamond [Huston et al., 2005] distributed search, queue based load
balancing, filter re-ordering

« Combination Static+Dynamic
— FlexStream [Hormati et al., 2009] muiltiple competing programs
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Design Flow of a Stream Program
with Flexible Filters

Design stream

algorithm
Mapping
>  Filters
« Memory
Profile
Add Fle"xibility E ljlnt-I-o':loatProfile of CFAR filters on Cell /
to BOttIeneCks E right window

compiler/ A
- Average Execution Time (microseconds) per 100 tokens
design tools
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Mapping Stream Programs
to Multi-Core Platforms
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Throughput: SPMD Mapping
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Flex-Split

Flex-split
pop data block b from in
n0 = available space on out0
nl = |b| - n0

send n0 to out0, nl to outl

send n0 0’s, then nl 1’s to
select

select

in out
<« fleX merge puummn

in1

v maintain ordering
v based on run-time state of queues



Flex-Merge

Flex-merge

pop i1 from
is O,
is 1,

token

select

pop token from in0O

m— [ R, [, i N = == "1
POp tokKemn rrom inlt

to out

in

select

out

<« fleX merge puummmn



Flex-Merge

Flex-merge
pop i1 from select
if i is 0, pop token from inO
if 1 is 1, pop token from inl

push token to out

select

/////’/”—7 ‘~§\\\\\\\\

Overhead of Flexibility?

in
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Input channel 2 <}

Input channel n /

Multi-Channel
Flex-Split and Flex-Merge
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Cell BE Processor

Distributed Memory

Heterogeneous
— 8 SIMD (SPU) cores
— 1 PowerPC (PPU)

Element Interconnect

Bus

— 4 rings
— 205 Gb/s
Gedae Programming Language
Communication Layer
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CFAR Benchmark
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float q window window

Profile of CFAR filters on Cell
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Data Dependency

By changing threshold, change % targets

- 13%
- 7.3%
 Additional workload per target
— 16 us
— 32 Us
— 64 us
% Targets
1.3 7.3
16 us 1.45
Additional
Workload 32 us 1.06 1.39
64 us 1.27 1.47




More Benchmarks

Benchmark | Field Results

Information | Rabin block/ max chunk size Speedup

Dedup Theory 4096/512 2.00

Image width x height

JPEG Image 128x128 1.31

Processing 256x256 1.16

512x512 1.25

stocks/walks/timesteps
Value-at- Finance 16/1024/1024
Risk 64/1024/1024 1.56
128/1024/1024 1.55




Conclusions

* Flexible filters
— adapt to data dependent bottlenecks
— distributed load balancing

— provide speedup without modification to
original filters

— can be implemented on top of general
stream languages



