
Flexible Filters for High-Performance Embedded Computing

Rebecca L. Collins and Luca P. Carloni

Department of Computer Science

Columbia University

{rlc2119,luca}@cs.columbia.edu

1. Introduction

Many high-performance embedded applications can be nat-
urally programmed with a stream-processing model which
exposes the inherent locality and concurrency among their
tasks and enables efficient implementations on parallel ar-
chitectures. Since an embedded software application may
be characterized by nondeterministic and data-dependent
behavior (as both the execution times of its tasks and their
data token production/consumption rates may vary dynam-
ically) efficient implementations on multi-core processor sys-
tems require load-balancing techniques. We propose flexi-

ble filters as a technique to dynamically balance the load
in stream programs when bottlenecks in the flow of data
arise [4]. Flexible filters can be added to a program with-
out modifying any of the original user code, and introduce
very little runtime overhead, depending only on backpres-
sure signals that are already present in the buffer APIs.

2. Flexible Filters

A stream program is a parallel program broken up into a
pipeline of tasks, called filters, connected with communica-
tion channels. A bottleneck filter is a filter that becomes
a bottleneck for data tokens in the stream, e.g. because
its operation has a significantly higher computational cost
than the other filters. A bottleneck filter may be tran-
sient, resulting from data-dependent special-case handling,
or constant, due to an inherently more expensive task. In
either case, when a filter is a bottleneck, optimal system
utilization is lost because cores executing upstream filters
must stall on full communication buffers, and cores execut-
ing downstream filters are starved for data. Fig. 1 shows a
simple stream program consisting of three filters connected
in a pipeline, with each filter mapped to a separate process-
ing core. Suppose that filter C becomes a bottleneck and
cannot keep up with the data tokens being sent through the
stream by A and B. As a result, core3 must force core2 to
stop. If this imbalance continues, core2 will eventually need
to send a stop signal to core1 as well.

Flexible filters alleviate bottlenecks at runtime by recruiting
idle upstream cores to help with the work of the bottleneck
filter. Suppose that core2 can also execute filter C, as illus-
trated in Fig. 2. Then, instead of stalling, core2 can “work
ahead” on the data tokens waiting in its buffers. Now the
rate at which data tokens are processed by filter C is in-
creased, and core3 has fewer data tokens to process, and so
the system can run faster. Filter C is duplicated on core2

so that core2 can share core3’s load. Two auxiliary filters,
flex split and flex merge (represented as small black boxes in
Fig. 2), orchestrate the split and merge of the data stream
based on available space in the downstream buffers. The
code overhead of flex split and flex merge is very low since
backpressure signals from the buffers are already in use in
FIFO based pipelines to prevent buffer overflow. They can
be added to the stream program without changing any of

A B C

"wai t "c o r e 1 c o r e 2 c o r e 3

Figure 1: Bottleneck Filter in a Pipeline Mapping.

A B C

"wai t "
c o r e 1 c o r e 2 c o r e 3

C

Figure 2: Flexible-Filter Mapping.

the original filters, and guarantee preservation of the order
among the data tokens in the stream.

Many stream programming languages, such as StreamIt, in-
clude split and join nodes in their set of library functions [5].
The compiler may also insert split and join in order to op-
timize the program by increasing data parallelism. This
achieves static load balancing because the data flow is split
at run-time regardless of the loads on the various cores. The
flexible-filters approach starts with a static mapping of fil-
ters to cores optimized based on profiling of the application
but achieves dynamic load balancing that adapts to load
imbalances which may be temporary or variable. The com-
bination of static and dynamic techniques is also used by
Flextream, which performs static compilation based on a
virtualized multi-core system, and runtime (re-)assignment
of filters to provide portability across platforms while tol-
erating changes in available system resources [7]. Chen et

al. propose an alternative, where several alternative filter
mappings are compiled and the runtime system “context-
switch”es between them [3]. Context-switches in the stream
mapping are complementary to flexible filters, applicable to
larger scale changes in flow behavior.

Stream-specific load balancing techniques allow for the op-
timization of buffer space allocation and minimize unnec-
essary code and data movement. Work stealing is a popu-
lar general purpose load balancing technique that balances
load by allowing idle cores to “steal” tasks from busy cores
[2, 9]. Most work stealing techniques go through stages
of load evaluation, reassignment, and task migration; and
their “victim” processors (from whom tasks will be stolen)
are selected randomly. In contrast, flexible filters do not
steal randomly, but use the knowledge that neighbors of
a bottleneck filter will be idle because they dependent on
this filter to continue processing data tokens. Moreover, the
decision to redirect flow is always made locally.

3. Experiments

We implement flexible filters using the Gedae dataflow lan-
guage and test a set of benchmarks on the Cell BE proces-
sor [1, 8], including the constant false-alarm rate (CFAR)



Benchmark Input Data Speedup

CFAR

% targets/workload
7.3/16µs 1.45
7.3/32µs 1.39
7.3/63µs 1.47
1.3/16µs 0.82
1.3/32µs 1.06
1.3/63µs 1.27

Dedup
Rabin block/max chunk size

4096/512 2.00

JPEG

image width x height
128x128* 1.31
256x256* 1.16
512x512* 1.25

Value-at-Risk

stocks/walks/timesteps
16/1024/1024 0.98
64/1024/1024 1.56
128/1024/1024 1.55

*individual benchmark images, each with distinct content

Table 1: Summary of speedup results for benchmarks
where one bottleneck filter is made flexible.

uInt to

Float
square

right

window

left

window

align

data

find

targets

add

Figure 3: CFAR block diagram.

0.00 0.02 0.04

Average Execution Time (microseconds)

uIntToFloat
square

right window
left window

add
align data

find targets

Figure 4: Profile of CFAR filters on Cell.

detection benchmark from the HPEC Challenge [6]. Table 1
lists the speedup gained in several stream benchmarks by
flexible filters compared to a parallel stream implementa-
tion without flexible filters. Next we analyze the CFAR
benchmark in more detail. CFAR detection identifies tar-
gets in a stream of incoming data with a noisy background,
using an adjustable threshold that changes based on the
background noise so that the false alarm rate is constant.
A block diagram of the CFAR benchmark is shown in Fig. 3,
and Fig. 4 shows a profile of CFAR’s filters’ execution times
in our implementation. All of CFAR’s filters have a rela-
tively small execution time with respect to the communica-
tion overhead, and we initially found no benefit to adding
flexibility to the program. In particular, the find targets

filter in our original implementation does not do additional
work after a target is detected, and so has relatively con-
stant execution time regardless of the content of the data
stream. However, in practice it is possible that once a target
is found, additional processing such as target classification
and tracking is desired [10]. To capture this fact, in the
CFAR experiments reported in Table 1 additional work is
performed every time a target is detected. Since the loca-
tion of targets is data dependent and may not be uniformly
distributed in the stream, the workload of find targets may
change dynamically, and spikes in the number of targets
detected could cause bottlenecks. Fig. 5 plots a histogram
of the time it takes to process a data block of 114 cells,
where 7% of the cells are targets, and an additional work-

0 200 400 600

Execution Time (microseconds)

0

5

10

15

P
er

ce
n

t 

Figure 5: Histogram of workload per 114 cells, with %
targets/workload = 7/32µs.

load of 32µs is added for each target. The speedup gained
by applying flexible filters in this case depends both on the
percentage of data tokens that require extra processing and
on the amount of extra work required. Notice that flexible
filters may introduce some runtime overhead because they
need a few additional buffers with respect to a non-flexible
filter mapping. This reduces the amount of memory for
the original buffers and may force a finer granularity of the
data blocks to be transferred, which can affect the overall
application performance.

4. Conclusions

As the scale of multi-core systems increases, the number of
concurrent tasks within a single application will also grow
as programmers attempt to extract as much available paral-
lelism as possible. With increasing parallelism at the appli-
cation level, unbalanced tasks and dynamic load variations
become more likely. Flexible filters provide a lightweight
and effective mechanism to better leverage multi-core ar-
chitectures for the execution of stream programs by making
them adapt to the presence of data-dependent behavior.

References
[1] Gedae, http://www.gedae.com/.
[2] M. A. Bender and M. O. Rabin. Online scheduling of paral-

lel programs on heterogeneous systems with applications to
Cilk. Theory of Computing Systems, 35(3):289–304, 2002.

[3] J. Chen et al. A reconfigurable architecture for load-
balanced rendering. In Proc. of the SIGGRAPH/ EURO-
GRAPHICS Conf. on Graphics Hardware, pages 71–80,
July 2005.

[4] R. L. Collins and L. P. Carloni. Flexible filters: Load bal-
ancing through backpressure for stream programs. In Intl.
Conf. on Embedded Software (EMSOFT), Oct. 2009.

[5] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream
programs. In Proc. of the Intl. Conf. on Architecture Sup-
port for Programming Languages and Operating Systems
(ASPLOS), pages 151–162, Oct. 2006.

[6] R. Haney, T. Meuse, J. Kepner, and J. Lebak. The
HPEC challenge benchmark suite. In The Ninth Anuual
High-Performance Embedded Computing Workshop (HPEC
2005), Sept. 2005.

[7] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge,
and S. Mahlke. Flextream: Adaptive compilation of stream-
ing applications for heterogeneous architectures. In Intl.
Conf. on Parallel Architectures and Compilation Tech-
niques, pages 214–223, 2009.

[8] J. Kahle et al. Introduction to the CELL multiprocessor.
IBM J. Res. Develop., 49(4-5):589–604, Sept. 2005.

[9] P. Kakulavarapu, O. Maquelin, J. N. Amaral, and G. R.
Gao. Dynamic load balancers for a multithreaded multipro-
cessor system. Parallel Processing Letters, 11(1):169–184,
2001.

[10] L. M. Novak, G. J. Owirka, W. S. Brower, and A. L. Weaver.
The automatic target-recognition system in SAIP. The Lin-
coln Laboratory Journal, 10(2):187–202, 1997.


