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Introduction1 
Very often, high-valued individuals or assets are taken in 
digital photos, either intentionally or unintentionally. In 
such situations, meta-data (including GPS coordinates, 
annotated landmarks, potential threats, etc.) is often 
unavailable or inaccurate. Because any individual image 
may contain considerable amounts of information, the 
ability to understand and extract 3-dimensional scene 
information would be advantageous. We present a system 
and its related methodologies to promote situational 
awareness given single EO-image, without meta-data or any 
other media and modalities. 

The proposed approach relies on several advances in 
computer vision that have been made over the past ten 
years. Specifically, object detection techniques and image 
registration techniques form the foundation of our system 
architecture. We modify and improve upon conventional 
approaches in both problem spaces, while fitting them to a 
proposed framework. This framework is presented with 
results that show the capability to detect targets in an image 
and geo-register them to an accuracy within a few meters. 

The framework involves complicated training and setup 
procedures in order to promote real-time exploitation. 
Obviously, for generalization purposes, the required data 
set is an extensive collection of tens of thousands of 
images, all at high-resolution, and enough resources must 
be available to support such a training set.  

While object detection training procedures can be 
completed within a few weeks serially, image registration 
procedures (whose ultimate goal is to create a 3-D point 
cloud) require several modularized tasks that could 
individually consume unwieldy runtimes. Without 
optimization, the potential run-time without 2713 images 
could take up to 715 hours…a month’s worth of processing 
time, not to mention memory and storage constraints. 

Fortunately, much of the training and setup can be 
parallelized, and the resultant distributed processing time 
can be reduced to 8 or 9 hours. The remainder of this 
abstract describes the computational methods in achieving a 
setup that is efficient, accurate, and quick. We will also 
discuss the exploitation of the generated product and its 
performance. 
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Processing Overview2 
The 3-D model consists of features taken from a 2-D set of 
images that overlap spatially in content. The final features 
are arranged in such a way that the 3-D point coordinates 
describe the originating structure of the content in the 2-D 
images. It is a collective data filtering process that 
simultaneously solves for scene structure while determining 
camera parameters for each image. The implementation is 
primarily taken from Noah Snavely’s Photo Tourism [1].  
 

 
Figure 1: Conceptual diagram of system. 

There are three major tasks to building the 3-D model: 
extracting features from images, finding correspondences 
across images, and then finding the structure from motion 
based on the matching information. Specifically, we label 
these modules: 

1. SIFT Feature Extraction [2] 
2. Approximate Nearest Neighbor Matching [3] 
3. Structure from Motion with Bundle Adjustment 

The feature extraction labeled as step 1 is a keypoint 
detector that is shift and rotation invariant feature, which is 
somewhat robust to changes in luminance (image 
brightness). Specifically, it is called the Shift Invariant 
Feature Transform (SIFT) [2]. Not only does SIFT return a 
list of keypoint locations within an image, but it also gives a 
unique n-dimensional descriptor vector that can be used for 
matching. Conventional demonstrations have concluded 
that by using 128-dimensional vectors, the best balance 
between speed and performance can be achieved while 
reliably matching images. 
Once features have been extracted, correspondences need to 
be established in step 2. For each pair of images, keypoints 
are matched by finding the nearest neighbor vector in the 
corresponding image, which is traditionally defined in 
Euclidean L-2 space. To speed up matching, Arya and 
Mount’s approximate nearest neighbor package (ANN) [3] 
can be exploited. For image I and J, ANN builds a kd-tree 
of features in image J and then queries the tree for the best 
match of each feature in image I. Instead of defining a valid 
match by thresholding the distance, valid matches are 
determined using a ratio test. This test is defined by finding 
the best two nearest neighbor in image I with distances d1 
and d2 where d1 < d2. Accept this features as a match if 
d1/d2 < th.  
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Finally, structure from motion (SfM) contains intricate 
optimization that makes it difficult to extricate 
parallelization techniques (though there is considerable 
potential). Part of the structure from motion process 
requires a process called bundle adjustment using a sparse 
bundle adjustment (SBA) package based on solving a 
numerical minimization problem using the Levenberg-
Marquadt algorithm.  

 
Optimization Overview3 
For typical 8MP images, SIFT returns, on average nine                                           
thousand features. Extracting features on average, 8MP 
images takes, on average, 40 seconds on a Pentium 4 
processor. Typical data sets include thousands of images. 
This translates to roughly 11 hours of computation time.  
 

Data Type Number of Points % of Original 
Raw Pixels 9,563,111,424 pixels 100% 

SIFT 12,976,125 features 0.1357% 
3-D SIFT 83,796 features 0.0000876% 

Table 1: LL-Grid Resources 

Among 128 computing nodes, extracting SIFT features in 
parallel (as images in this step can be independently 
processed), the computation time for 1012 images runs in 
under five minutes. Of course, this scales linearly with the 
number of images to be added. 
While it may seem unwieldy to match SIFT features, 
operating on entire images is nearly impossible, as 10 
Gigapixels equates to roughly 77GB of uncompressed data. 
Extracting SIFT features over a single image pares the 
information to less than a percentage of relevant and salient 
data points. Moreover, because images share features 
among each other, there is no need to keep redundant 
features corresponding to the same 3-D geo-coordinates. 
That is, a representative 3-D SIFT feature can describe a 
unique geo-position shared across several 2-D images. 
Table 1 describes the data compression savings. 
Finding these matched features among 2-D images is 
another task that stands to gain from parallelization. To 
match every image to every other image requires n(n+1)/2 
image matches, where n is the number of images in the 
training set. The total matching time for a single processor 
on 1012 images would take roughly 256 hours. Among 128 
nodes, this, of course, would be reduced to two hours. 
 

LL-Grid Processing  
The overall performance results are given in Figure 2. We 
can also build an understanding of the proportion of time 
used for each of the three tasks. The non-parallelized 
portion of the code cannot be reduced in time, which is 
why, for the most part, they consume the largest proportion. 
Of course, the matching and reconstruction times are highly 
dependent on the image content. 

                                                 
  

 
Figure 2: Performance results. 

 

Summary and Future Work 
We have described the implementation issues in 
constructing a 3-D static model using SIFT features. 
Without optimization and parallelization, SIFT extraction, 
matching, and bundle adjustment will render the model 
creating intractable. By running scripts to compute in 
parallel, the overall runtime for our set of images is 
acceptable. 

Because it solves a single problem involving all data 
simultaneously, SfM remains the computational bottleneck 
of the system architecture. 
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