

Scalable Image Graph Matching & Analysis (SIGMA)

Karl Ni Nadya Bliss Peter Cho Zachary Sun Noah Snavely (Cornell University)

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

SIGMA 1 Ni 11/1/2010

Outline

- Introduction
 - SIGMA
 - Problem Space
- State of the Art
- SIGMA: Scalable Image Graph Matching and Analysis
- Summary and Future Work

- Scalable Image Graph Matching and Analysis
- Multi-INT exploitation and object registration with incomplete metadata through scalable algorithms and common data representation
- Current Exploitation Products:
 - Multi-INT Fusion Representation
 - Single image geo-registration
 - Single target detection registration

Target Geo-registration

- Geo-register high valued targets
 - Using only single 2-D image data
 - In the absence of meta-data
 - Objects within the image
- Geo-registration error ~5 meters

- Introduction
- State-of-the-Art
- SIGMA: Scalable Image Graph Matching and Analysis
- Summary and Future Work

Commercial Tools

- Photosynth
- Reg. of unorganized media

- Google Goggles
- Image tagging and labeling

- Web tagging applications
- General face recognition

- Real-time object detection
- General object detection

Technology Gap: Commercial World & DoD + IC

Registration of unorganized media	Relative	\checkmark
	Absolute	X
Single image registration	Relative	X
	Absolute	X
Target detection	General	
	3D Georegistration	X
Target registration		X
Target recognition		A
Distribution of images		X
3-D target tracking through coverage areas		X
3-D aerial georegistration and tracking		Ŷ
Video target registration		X
Image tagging and labeling		

SIGMA and Leveraged Products

Registration of unorganized media	Relative	√
	Absolute	~
Single image registration	Relative	~
	Absolute	~
Target detection	General	~
	3D Georegistration	~
Target registration		~
Target recognition		~
Distribution of images		(YR 3) 🗸
3-D target tracking through coverage areas		(YR 3)
3-D aerial georegistration and tracking		(YR 2&3)
Video target registration		(YR 2)
Image tagging and labeling		√

Outline

FEATURE FEATURES MATCHING AND GRAPH 3D EXTRACTION REGISTRA

- Introduction
- State of the Art
- SIGMA: Scalable Image Graph Matching and Analysis
 - Static Background Model
 - Exploitation
 - Single image registration
 - **Object detection**
 - **Object registration**
 - Complexity
 - Data reduction and storage Computational
- Summary and Future Work

 Scale/rotation invariant features are extracted and stored as vectors

 Scale/rotation invariant features are extracted and stored as vectors

• Features are matched across images to generate a correspondence map

IMAGE GRAPH

 Scale/rotation invariant features are extracted and stored as vectors

- Matches and relationships are used to estimate camera
 - parameters and recover 3D structure
 - Global translation, rotation, and scaling is computed to fuse point cloud and ladar

Outline

FEATURE FEATURES MATCHING AND GRAPH 3D EXTRACTION DETECTION REGISTRA

- Introduction
- State of the Art
- SIGMA: Scalable Image Graph Matching and Analysis
 - Static Background Model
 - Exploitation
 Single image registration
 Object detection
 Object registration
 - Complexity Data reduction and storage
 - Computational
- Summary and Future Work

New Photo Registration

- Extract SIFT Features
- Match Features
- Determine 3-D parameters
 - RANSAC
 - Bundle adjustment
- Find absolute geo-coordinates

MATCHING AND DETECTION

GRAPH

3D REGISTRATION

FEATURE EXTRACTION

MATCHING AND DETECTION

GRAPH

3D REGISTRATION

 Point cloud consists of averaged SIFT features at refined locations

- Point cloud consists of averaged SIFT features at refined locations
- Approximate Nearest Neighbor
- Match to 2-D Features to 3-D Point Cloud

$$\begin{aligned} X_{match,i} &= \underset{F_{j}}{\operatorname{argmin}} \|f_{i}^{(T)} - F_{j}\|^{2} \\ d_{1}, d_{2} &= \underset{F_{j,1},F_{j,2}}{\min} \|f_{i}^{(T)} - F_{j}\|^{2} \quad \frac{d_{1}}{d_{2}} > th \end{aligned}$$

• X is the matched feature position, d₁, d₂, are the feature distances, F is the representative feature

- Camera Refinement
 - Maximum likelihood estimate of camera parameters
 - Iterative least squares fitting problem

- RANSAC
 - RANdom SAmple Consensus
 - Linear regression:

P = K[R | t]

where P = projection matrix, K = camera intrinsics, R = rotation matrix, t = translation vector

- Camera Refinement
 - Maximum likelihood estimate of camera parameters
 - Iterative least squares fitting problem

- Introduction
- State of the Art

• SIGMA: Scalable Image Graph Matching and Analysis

- Static Background Model
- Exploitation
 - Single image registration
 - **Object detection**
 - **Object registration**
- Complexity
 Data reduction and storage
 Computational
- Summary and Future Work

Face Feature Matching

SIGMA 24 Ni 11/1/2010

MIT Lincoln Laboratory

SIGMA 25 Ni 11/1/2010

FEATURE FEATURES MATCHING AND GRAPH REC

MIT Lincoln Laboratory

2-D Image

SIGMA 26 Ni 11/1/2010

FEATURE FEATURES MATCHING AND GRAPH 3D REGISTRATION

FEATURE FEATURES MATCHING AND GRAPH 3D CETECTION REGISTRATI

- Assume a single dimension of extracted face bounding box equals 8 inches
- Backproject 2D bounding box corners into 3D using camera's reconstructed parameters
 - Determine from camera parameters
 - Determine from 3-D image space

Detection and Registration Results

- > 100X reduction in data size
- < 5 meters registration errors
- Operation over a square mile of urban terrain
- MIT campus as the urban landscape
- Processing chain takes less than a minute

Compression and Compactness

• Single 8MP Image

• Video (28 seconds): 2.02 Gpix

• Combined Media: 21.6 GB

• SIFT Key File: 10k Features

 Graph/3D Point Cloud: 189k Features

MIT Lincoln Laboratory

Compression and Compactness

• Single 8MP Image

• Video (28 seconds): 2.02 Gpix

• Combined Media: 21.6 GB

- SIFT Key File: 10k Features
 IMG_3676.key
- Graph/3D Point Cloud: 189k Features

MIT Lincoln Laboratory

Summary

- Developed prototype of Multi-INT exploitation system
- Demonstrated geo-registration of targets from a single image
 - End-to-end system
 - Modularized: multiple tasks
 - Image Registration
 - **Target Detection**
 - **Target Registration**
 - Each module has several components
 - High registration accuracy, low exploitation complexity

Future Work: Towards Scene Understanding

- Near term
 - Enhancing image detection
 - Graph analysis
 - Failure mode analysis
 - Image distributions
- Longer term
 - Face recognition
 - Video surveillance
 - Aerial registration
 - Further integration of INT

"IT'S NOT SCI-FI, IT'S (AUGMENTED) REALITY" – Fortune Magazine, 3/22/2010

Questions?