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Introduction 
Many defense and commercial communication system 

applications rely on electromagnetic simulations for signal 

exploitation and mission planning.  For instance, when 

deploying a communication system it is important to 

predict the coverage that the system will provide.  Such 

prediction often takes the form of field profiles, which are 

color plots indicating the simulated field strength from a 

transmitter over a geographic area.  These plots are 

frequently overlaid on maps to allow planners to ensure, 

for example, that soldiers can maintain a communication 

link with command in the battlefield or cellular providers 

can ensure their cell phone users do not experience 

dropped calls.   

Despite their importance, field profiles can be difficult to 

generate.  Physical measurements take time and often are 

impossible if access to the area is restricted.  For numerical 

simulation based on computer models, even the fastest 

algorithms often take significant time to carry out the 

computation.  This is because field values must be found 

not only for a large number of observation points, but also 

for multiple frequencies.   

In order to provide planners with this critical information, 

the computation time required to generate field profiles 

should be greatly reduced, ideally to real-time speeds.  If 

such a reduction were possible, transmitters and receivers 

could be relocated and still operate as originally intended 

in response to changes in the operating environment. 

Fortunately, with the right choice of simulation algorithm, 

the field value at each observation point/frequency pair can 

be computed independently of all other observation 

point/frequency pairs.  This suggests that significant 

performance increases can be realized using the 

increasingly parallel processing capabilities afforded by 

multi-core Central Processing Units (CPUs), Graphics 

Processing Units (GPUs), and even Field Programmable 

Gate Arrays (FPGAs). 

In this paper we present a case study comparing such a 

field-profile generation algorithm implemented as a GPU 

code with the same algorithm implemented as a CPU code.  

We also present the predicted performance when the 

algorithm is implemented on an FPGA as estimated by 

Concurrent Analytics [1].  Previous research in [2] has 

looked at GPU acceleration of Radar Cross Section 

calculation, but to our knowledge this is the first time the 

use of a GPU has been investigated for calculating very 

large field profiles.  The combination of fast hardware 

along with properly chosen simulation algorithms will be 

shown to bring this military and commercial application a 

step closer to becoming real-time embedded computing. 

Simulation Algorithm 
There are many algorithms available for the simulation of 

electromagnetic radiation and scattering.  Here we chose to 

use what is known as the Physical Optics – Shooting and 

Bouncing Ray (PO-SBR) algorithm [3].  This algorithm 

involves two separate processes.   

In the first stage, known as SBR, a CAD model is loaded 

and used to represent the environment in which the fields 

will be measured.  A bundle of rays are launched radially 

from each transmitter.  Each generated ray is traced 

through the scene and is reflected off of each surface of the 

environment it encounters. 

In the second stage, known as PO, each of the ray/surface 

interactions gets mapped to an equivalent current.  Those 

currents then radiate to each field observation point as a 

function of the signal frequency, surface normal and 

distance from the ray/surface interaction point to the 

observation point. 

Hardware Acceleration 
There are two types of hardware we investigate in this 

paper.  First we compare a CPU implementation of the PO-

SBR algorithm to a GPU implementation of the same 

algorithm.  The CPU implementation is single-threaded, 

despite the use of an Intel® Xeon® E5530 processor, 

which contains four cores.  While this processor is capable 

of executing four threads concurrently, the CPU metrics 

only consider serial execution and serve as a baseline.  

This implementation uses the well-known PBRT ray-tracer 

to perform the SBR stage [4]. 

The GPU implementation was developed using CUDA
TM

, 

NVIDIA®’s GPGPU language.  All benchmarks were 

taken on an NVIDIA® Quadro® 5800 card, which 

contains 4GB of global memory and 240 thread 

processors.  Each stage of the algorithm is parallelized 

differently according to its requirements. 

The SBR stage is parallelized using NVIDIA®’s OptiX
TM

 

package since each generated ray is independent of others.  

The PO stage is parallelized across observation points and 

frequencies.  Each thread on the GPU will loop over all 

ray/surface interactions from the current ray-trace and 

radiate the assigned current from the intersection point to 

the observation point, where the field is accumulated.   

The potential performance of the algorithm on an FPGA is 

also considered.  For this we used the Concurrent 

Analytics
 
tool developed by Concurrent EDA.  This tool 

instruments and observes the application as it executes.  



An instruction-level analysis is then further exploited for 

loop-level and instruction-level parallelism that is eligible 

to be converted into FPGA operations.  The output is 

FPGA area and performance estimation.  

Results 
To compare the different hardware acceleration methods 

we chose the example problem shown in Figure 1.  This 

geometry consists of a collection of four metal plates 

distributed around a transmitter.  In this case the 

transmitter represents an electric Hertzian dipole antenna 

with a center frequency of 10GHz.  At this frequency the 

total area the fields are computed over is 16m by 18m.   

The reason we chose this example is because it gave us a 

controlled environment that would still be challenging for 

most simulation software.  What makes this a challenging 

problem is the size of the geometry involved and the 

multiple paths that energy can propagate over – thus 

requiring an electromagnetic simulation for an accurate 

prediction of the field strength. 

 

Figure 1: Geometry consisting of four plates. 

To produce the field profiles shown in Figure 2 the ray 

tracing part of the PO-SBR simulation consisted of 12,746 

intersection points that were then radiated to different 

observation points.  In these plots the red color indicates 

stronger field strength and the blue color indicates weaker 

field strength.  For instance, the blue regions are where the 

field is shielded by the metal plates. 

 

Figure 2: Field profiles with 100, 10,000 and 250,000 

observation points. 

Shown in Figure 3 is a plot of the performance speed-up 

for both GPU and FPGA accelerated versions.   

 

Figure 3: Speed up of device run time relative to CPU. 

The FPGA analysis was focused on the PO portion of the 

application as this consumes almost all of the total 

application time.  The inner loop of PO was determined to 

be 1130 processor instructions of which 131 were floating 

point operations and seven were math library calls.  A 

pipeline of FPGA operations was constructed for analysis 

that did not include the systems calls and resulted in 275 

stages.  It is estimated that the system calls will add 

another 50-100 cycles.  Concurrent EDA’s tools guarantee 

200MHz performance and thus the first results will require 

at least 1625ns while each subsequent result will only 

require 5ns since each pipeline stage can operate on a 

different combination of hit point, observation point, and 

frequency.  Thus, the steady state performance is one result 

every 5ns.  Latency from a host processor to an in-socket 

FPGA is under 100ns and can also be pipelined.  Expected 

steady state performance is between 5ns and 20ns per 

combination for 1,000 combinations and higher.   

To put these numbers in context for this case study, to 

obtain a field profile with a resolution of one square-

wavelength over a 16m by 18m area due to a 10GHz 

transmitter a CPU code would require about 45min.  But 

using a GPU we are able to compute the same field profile 

in only about 35sec.  Using the FPGA estimations, the 

expected performance on an FPGA could be reduced to 

16sec. 

Conclusion 
This case study has shown that hardware acceleration, such 

as that available with current GPU and FPGA technology, 

can significantly reduce the simulation time required for 

calculating the field profile generated by a PO-SBR 

simulation.  Having the ability to rapidly and accurately 

calculate these field profiles can improve many military 

and commercial communication planning and operations. 
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