
Hardware Acceleration of Electromagnetic Field Profile Computation:
A Case Study Using the PO-SBR Method

Eric Dunn
1
, Nathan Smith

1
, Ray Hoare

2
, Huan-Ting Meng

3
, and Jianming Jin

3

1
Science Applications International Corporation ({eric.a.dunn, nathan.j.smith}@saic.com)

2
Concurrent EDA (rayhoare@concurrenteda.com)

3
University of Illinois at Urbana-Champaign ({meng2, j-jin1}@illinois.edu)

Introduction
Many defense and commercial communication system

applications rely on electromagnetic simulations for signal

exploitation and mission planning. For instance, when

deploying a communication system it is important to

predict the coverage that the system will provide. Such

prediction often takes the form of field profiles, which are

color plots indicating the simulated field strength from a

transmitter over a geographic area. These plots are

frequently overlaid on maps to allow planners to ensure,

for example, that soldiers can maintain a communication

link with command in the battlefield or cellular providers

can ensure their cell phone users do not experience

dropped calls.

Despite their importance, field profiles can be difficult to

generate. Physical measurements take time and often are

impossible if access to the area is restricted. For numerical

simulation based on computer models, even the fastest

algorithms often take significant time to carry out the

computation. This is because field values must be found

not only for a large number of observation points, but also

for multiple frequencies.

In order to provide planners with this critical information,

the computation time required to generate field profiles

should be greatly reduced, ideally to real-time speeds. If

such a reduction were possible, transmitters and receivers

could be relocated and still operate as originally intended

in response to changes in the operating environment.

Fortunately, with the right choice of simulation algorithm,

the field value at each observation point/frequency pair can

be computed independently of all other observation

point/frequency pairs. This suggests that significant

performance increases can be realized using the

increasingly parallel processing capabilities afforded by

multi-core Central Processing Units (CPUs), Graphics

Processing Units (GPUs), and even Field Programmable

Gate Arrays (FPGAs).

In this paper we present a case study comparing such a

field-profile generation algorithm implemented as a GPU

code with the same algorithm implemented as a CPU code.

We also present the predicted performance when the

algorithm is implemented on an FPGA as estimated by

Concurrent Analytics [1]. Previous research in [2] has

looked at GPU acceleration of Radar Cross Section

calculation, but to our knowledge this is the first time the

use of a GPU has been investigated for calculating very

large field profiles. The combination of fast hardware

along with properly chosen simulation algorithms will be

shown to bring this military and commercial application a

step closer to becoming real-time embedded computing.

Simulation Algorithm
There are many algorithms available for the simulation of

electromagnetic radiation and scattering. Here we chose to

use what is known as the Physical Optics – Shooting and

Bouncing Ray (PO-SBR) algorithm [3]. This algorithm

involves two separate processes.

In the first stage, known as SBR, a CAD model is loaded

and used to represent the environment in which the fields

will be measured. A bundle of rays are launched radially

from each transmitter. Each generated ray is traced

through the scene and is reflected off of each surface of the

environment it encounters.

In the second stage, known as PO, each of the ray/surface

interactions gets mapped to an equivalent current. Those

currents then radiate to each field observation point as a

function of the signal frequency, surface normal and

distance from the ray/surface interaction point to the

observation point.

Hardware Acceleration
There are two types of hardware we investigate in this

paper. First we compare a CPU implementation of the PO-

SBR algorithm to a GPU implementation of the same

algorithm. The CPU implementation is single-threaded,

despite the use of an Intel® Xeon® E5530 processor,

which contains four cores. While this processor is capable

of executing four threads concurrently, the CPU metrics

only consider serial execution and serve as a baseline.

This implementation uses the well-known PBRT ray-tracer

to perform the SBR stage [4].

The GPU implementation was developed using CUDA
TM

,

NVIDIA®’s GPGPU language. All benchmarks were

taken on an NVIDIA® Quadro® 5800 card, which

contains 4GB of global memory and 240 thread

processors. Each stage of the algorithm is parallelized

differently according to its requirements.

The SBR stage is parallelized using NVIDIA®’s OptiX
TM

package since each generated ray is independent of others.

The PO stage is parallelized across observation points and

frequencies. Each thread on the GPU will loop over all

ray/surface interactions from the current ray-trace and

radiate the assigned current from the intersection point to

the observation point, where the field is accumulated.

The potential performance of the algorithm on an FPGA is

also considered. For this we used the Concurrent

Analytics

tool developed by Concurrent EDA. This tool

instruments and observes the application as it executes.

An instruction-level analysis is then further exploited for

loop-level and instruction-level parallelism that is eligible

to be converted into FPGA operations. The output is

FPGA area and performance estimation.

Results
To compare the different hardware acceleration methods

we chose the example problem shown in Figure 1. This

geometry consists of a collection of four metal plates

distributed around a transmitter. In this case the

transmitter represents an electric Hertzian dipole antenna

with a center frequency of 10GHz. At this frequency the

total area the fields are computed over is 16m by 18m.

The reason we chose this example is because it gave us a

controlled environment that would still be challenging for

most simulation software. What makes this a challenging

problem is the size of the geometry involved and the

multiple paths that energy can propagate over – thus

requiring an electromagnetic simulation for an accurate

prediction of the field strength.

Figure 1: Geometry consisting of four plates.

To produce the field profiles shown in Figure 2 the ray

tracing part of the PO-SBR simulation consisted of 12,746

intersection points that were then radiated to different

observation points. In these plots the red color indicates

stronger field strength and the blue color indicates weaker

field strength. For instance, the blue regions are where the

field is shielded by the metal plates.

Figure 2: Field profiles with 100, 10,000 and 250,000

observation points.

Shown in Figure 3 is a plot of the performance speed-up

for both GPU and FPGA accelerated versions.

Figure 3: Speed up of device run time relative to CPU.

The FPGA analysis was focused on the PO portion of the

application as this consumes almost all of the total

application time. The inner loop of PO was determined to

be 1130 processor instructions of which 131 were floating

point operations and seven were math library calls. A

pipeline of FPGA operations was constructed for analysis

that did not include the systems calls and resulted in 275

stages. It is estimated that the system calls will add

another 50-100 cycles. Concurrent EDA’s tools guarantee

200MHz performance and thus the first results will require

at least 1625ns while each subsequent result will only

require 5ns since each pipeline stage can operate on a

different combination of hit point, observation point, and

frequency. Thus, the steady state performance is one result

every 5ns. Latency from a host processor to an in-socket

FPGA is under 100ns and can also be pipelined. Expected

steady state performance is between 5ns and 20ns per

combination for 1,000 combinations and higher.

To put these numbers in context for this case study, to

obtain a field profile with a resolution of one square-

wavelength over a 16m by 18m area due to a 10GHz

transmitter a CPU code would require about 45min. But

using a GPU we are able to compute the same field profile

in only about 35sec. Using the FPGA estimations, the

expected performance on an FPGA could be reduced to

16sec.

Conclusion
This case study has shown that hardware acceleration, such

as that available with current GPU and FPGA technology,

can significantly reduce the simulation time required for

calculating the field profile generated by a PO-SBR

simulation. Having the ability to rapidly and accurately

calculate these field profiles can improve many military

and commercial communication planning and operations.

References
[1] Concurrent EDA, Concurrent Analytics.

http://www.concurrenteda.com/analytics.php.

[2] Y. Tabo, H. Lin, and H. Bao, “GPU-Based Shooting and

Bouncing Ray Method for Fast RCS Prediction,” IEEE

Trans. Antennas & Propagat., Vol. 58, No. 2, Feb. 2010.

[3] H. Ling, R. C. Chou, and S. W. Lee, “Shooting and

Bouncing Rays: Calculating the RCS of an Arbitrary

Shaped Cavity,” IEEE Trans. Antennas & Propagat., Vol.

37, No. 2, Feb. 1989.

[4] M. Pharr and G. Humphreys, Physically Based Rendering

from Theory to Implementation. Morgan Kaufmann, 2004.

http://www.pbrt.org.

Intel and Xeon are trademarks of Intel Corporation in the U.S. and other countries. NVIDIA, Quadro, CUDA, and OptiX are trademarks and/or registered

trademarks of NVIDIA Corporation in the U.S. and other countries.

