McCoy, Brooks Moses, Stefan Seefelgl J;,

7S '"""' dike LeBlanc, and Jules Bergmann -ﬂ-

w,‘r-':‘\ H" \
,« ' CodeSourcery, Inc.

G (ODESOURCERY [

Outline

Framing question: How can we preserve our
programming investment and maintain
competitive performance, in a world with
ever-changing hardware?

 Topics
 Example synthetic-aperture radar (SSAR) application
o Sourcery VSIPL++ library for CUDA GPUs
* Porting the SSAR application to this new target
 Portability and performance results

23-Sep-09

« Example code: SSCA3 SSAR benchmark
* Provides a small but realistic example of HPEC code

e Sourcery VSIPL++ implementation
* Initial target-independent version
e Optimized for x86 (minimal changes)
e Optimized for Cell/B.E. (a bit more work)

e Results
* Productivity (lines of code, difficulty of optimization)
e Performance (comparison to ref. implementation)

23-Sep-09

Raw SAR
Return

Major

Computations:

Digital Spotlighting

J' 11 51

- *’-:3?

..n
. .

Formed

Interpolation SAR Image

Fast-time N Bandwidth
Filter <& Expand
FFT mmul
mmul FFT
pad
FFTL

Scalable Synthetic SAR
Benchmark

 Created by MIT/LL
 Realistic Kernels

e Scalable

* Focus on image formation kernel

 Matlab & C ref impl avail

Range Loo SRERN
Matched N . J P ERER
Filter & _2" -
2D FFT‘1a -
FFT interpolate
mmul 2D FFT?
magnitude
Challenges

* Non-power of two data sizes
(1072 point FFT — radix 67!)

» Polar -> Rectangular interpolation
e 5 corner-turns
o Usual kernels (FFTs, vmul)

Highly Representative Application

23-Sep-09

* Most portions use standard VSIPL++ functions
e Fast Fourier transform (FFT)
« Vector-matrix multiplication (vmmul)

e Range-loop interpolation implemented in user code
o Simple by-element implementation (portable)
e User-kernel implementation (Cell/B.E.)

e Concise, high-level program
e 203 lines of code in portable VSIPL++
e 201 additional lines in Cell/B.E. user kernel.

23-Sep-09

(% CODESOURCERY | .‘fi:f‘._" e | _;-;T ﬂ j —-:.-; -, =7 —

Conclusions from 2008 HPEC presentatlon

e Productivity
e Optimized VSIPL++ easier than unoptimized C
 Baseline version runs well on x86 and Cell/B.E.

« User kernel greatly improves Cell/B.E. performance
with minimal effort.

e Performance

« Orders of magnitude faster than reference C code
« Cell/B.E. 5.7x faster than Xeon x86

23-Sep-09

(% (onESOURCERT | .‘fi:f‘._" = L _;-#,E_T ﬂ e -, __ ‘

Conclusions from 2008 HPEC presentatlon

e Productivity

. What about the future?
° ANCe

« Technology refresh?

«| e« Portability to future platforms?)de

A —4

e What if we need to run this on
something like a GPU?

23-Sep-09 7

g . ar l’f.__j ._‘-I
@ (ouEsouncry [} ;;;T

What about the future then?

e Porting the SSAR application to a GPU

e Build a prototype Sourcery VSIPL++ for CUDA.
e Port the existing SSAR application to use it.
 How hard is that port to do?
« How much code can we reuse?

 What performance do we get?

23-Sep-09

@ (OESOURCERY (S

Characterlstlcs of GPUs

Tesla C1060 GPU: Cell/B.E.:

e 240 multithreaded e 8 coprocessor cores
COpProcessor cores

» Cores execute In . Cores are completely
(partial) lock-step independent

23-Sep-09

4GB device memory « Limited local storage
Slow device-to-RAM + Egst transfers from

data transfers RAM to local storage
Program in CUDA, « Program in C, C++
OpenCL

Very different concepts; low-level code is not portable

e Part 1. Selected functions computed on GPU:

o Standard VSIPL++ functions:
e 1-D and 2-D FFT (from CUDAFFT library)
* FFTM (from CUDAFFT library)
 Vector dot product (from CUDABLAS library)
« Vector-matrix elementwise multiplication
 Complex magnitude
e Copy, Transpose, FreqSwap

* Fused operations:
 Fast convolution
« FFTM and vector-matrix multiplication

23-Sep-09

o Part 2: Data transfers to/from GPU device memory
e Support infrastructure
* Transfer of data between GPU and RAM
* Integration of CUDA kernels into library

 Integration with standard VSIPL++ blocks
 Data still stored in system RAM

* Transfers to GPU device memory as needed for
computations, and then back to system RAM

 Completely transparent to user

Everything so far requires no user code changes

23-Sep-09

(S (oneSouncen [

Digital Spotlight
Fast-time filter ~ 0.078 s
BW expansion 0.171s
Matched filter 0.144 s
Interpolation
Range loop 1.099 s

2D IFFT 0.142 s
Data Movement 0.215 s
Overall 1.848 s

Initial CUDA Results

Initial CUDA results Baseline x86

"'-:3?

3.7 GF/s
5.4 GF/s
4.8 GF/s

0.8 GFIs
6.0 GF/s
1.8 GB/s

E "t.""_
Jr

0.37s 4.8
0.47s 2.8
0.35s 2.4
1.09s

0.38s 2.7
0.45s 2.1
3.11s 1.8

Almost a 2x speedup — but we can do better!

23-Sep-09

e Code here is almost all high-level VSIPL++ functions

* Problem: Computations on GPU, data stored in RAM
e Each function requires a data round-trip

« Solution: New VSIPL++ Block type: Gpu_block
e Moves data between RAM and GPU as needed
e Stores data where It was last touched

 Requires a simple code change to declarations:

typedef Vector<float, Gpu block>
real vector_ type,

23-Sep-09

@ Conesouncy [

Gpu_block CUDA Results

Initial CUDA results Baseline x86

Digital Spotlight
Fast-time filter ~ 0.078 s 3.7 GFIs 0.37s
BW expansion 0.171s 5.4 GF/s 0.47s
Matched filter 0.144 s 4.8 GF/s 0.355s

Gpu_block CUDA results

Digital Spotlight

Base:line x86

Fast-time filter ~ 0.023s 12.8 GF/s 0.37s
BW expansion 0.059s 15.7 GF/s 0.47s
Matched filter 0.033s 21.4 GF/s 0.35s

Maintaining data on GPU provides 3x-4x additional speedup

23-Sep-09

 Range Loop takes most of the computation time
e Does not reduce to high-level VSIPL++ calls

« As with Cell/B.E., we write a custom “user kernel” to
accelerate this on the coprocessor.

o Sourcery VSIPL++ handles data movement, and
provides access to data in GPU device memory.

* Much simpler than using CUDA directly
o User kernel only needs to supply computation code
« ~150 source lines

23-Sep-09

(5 (oeSouncery SRS/ = /. fm. J r ST

Optimized CUDA Results

23-Sep-09

Optimized CUDA Baseline x86

Digital Spotlight

Fast-time filter ~ 0.023s 12.8 GF/s 0.37 s 16.3

BW expansion 0.059s 15.7 GF/s 0.47s 8.0

Matched filter 0.033s 21.4GFIs 0.355s 10.8
Interpolation

Range loop 0.262 s 3.2 GF/s 1.09 s 4.1

2D IFFT 0.036s 23.6 GF/s 0.38s 10.5
Data Movement 0.095 s 4.0 GB/s 0.45s 4.7
Overall 0.509 s 31ls 6.1

Result with everything on the GPU: a 6x speedup.

6 (ODESOURCERY [

Conclusions

o Sourcery VSIPL++ for CUDA GPUs
* Prototype code exists now
e Contains everything needed for SSAR application

« Porting code to new targets with Sourcery VSIPL++
works with realistic code in practice.

 GPUs are very different from Cell/B.E., but:
e “50% performance” with zero code changes
 Much better performance with minimal changes

e And can easily hook in rewritten key kernels for best
performance.

23-Sep-09

