
Sourcery VSIPL++ for NVIDIA CUDA GPUs

Don McCoy, Brooks Moses, Stefan Seefeld,
Mike LeBlanc, and Jules Bergmann

CodeSourcery, Inc.

OutlineOutline

Framing question: How can we preserve ourFraming question: How can we preserve our
programming investment and maintain

competitive performance, in a world with
h i h d ?

T i

ever-changing hardware?

• Topics
• Example synthetic-aperture radar (SSAR) application
• Sourcery VSIPL++ library for CUDA GPUsSou ce y S b a y o CU G Us
• Porting the SSAR application to this new target
• Portability and performance results

23-Sep-09 2

Review of 2008 HPEC PresentationReview of 2008 HPEC Presentation
• Example code: SSCA3 SSAR benchmark

• Provides a small but realistic example of HPEC code• Provides a small but realistic example of HPEC code

• Sourcery VSIPL++ implementationy p
• Initial target-independent version
• Optimized for x86 (minimal changes)

O ti i d f C ll/B E (bit k)• Optimized for Cell/B.E. (a bit more work)

• Resultsesu ts
• Productivity (lines of code, difficulty of optimization)
• Performance (comparison to ref. implementation)

23-Sep-09 3

SSCA3 SSAR BenchmarkSSCA3 SSAR Benchmark
Raw SAR

Return

Formed
SAR ImageDigital Spotlighting Interpolation

Fast-time
Filter

Bandwidth
Expand

Matched
Filter

2D FFT-1

Range Loop

Major
Computations:

FFT
mmul

mmul
FFT
pad
FFT-1

FFT
mmul

interpolate
2D FFT-1

magnitude
FFT

Scalable Synthetic SAR
Benchmark

• Created by MIT/LL

Challenges
• Non-power of two data sizes

(1072 point FFT – radix 67!)Created by MIT/LL
• Realistic Kernels
• Scalable
• Focus on image formation kernel

(1072 point FFT radix 67!)
• Polar -> Rectangular interpolation
• 5 corner-turns
• Usual kernels (FFTs, vmul)

23-Sep-09 4

• Matlab & C ref impl avail

Highly Representative Application

Characteristics of VSIPL++ SSAR ImplementationCharacteristics of VSIPL++ SSAR Implementation
• Most portions use standard VSIPL++ functions

• Fast Fourier transform (FFT)• Fast Fourier transform (FFT)
• Vector-matrix multiplication (vmmul)

• Range-loop interpolation implemented in user code
• Simple by-element implementation (portable)

U k l i l t ti (C ll/B E)• User-kernel implementation (Cell/B.E.)

• Concise, high-level programCo c se, g e e p og a
• 203 lines of code in portable VSIPL++
• 201 additional lines in Cell/B.E. user kernel.

23-Sep-09 5

Conclusions from 2008 HPEC presentationConclusions from 2008 HPEC presentation
• Productivity

• Optimized VSIPL++ easier than unoptimized C• Optimized VSIPL++ easier than unoptimized C
• Baseline version runs well on x86 and Cell/B.E.
• User kernel greatly improves Cell/B.E. performance g y p p

with minimal effort.

• Performance• Performance
• Orders of magnitude faster than reference C code
• Cell/B.E. 5.7x faster than Xeon x86

23-Sep-09 6

Conclusions from 2008 HPEC presentationConclusions from 2008 HPEC presentation
• Productivity

• Optimized VSIPL++ easier than unoptimized C• Optimized VSIPL++ easier than unoptimized C
• Baseline version runs well on x86 and Cell/B.E.
• User kernel greatly improves Cell/B.E. performance

What about the future?
g y p p

with minimal effort.

• Performance

• Technology refresh?
• Performance

• Orders of magnitude faster than reference C code
• Cell/B.E. 5.7x faster than Xeon x86

• Portability to future platforms?

• What if we need to run this on
something like a GPU?

23-Sep-09 7

What about the future then?What about the future, then?
• Porting the SSAR application to a GPU

• Build a prototype Sourcery VSIPL++ for CUDA.

• Port the existing SSAR application to use it.

H h d i th t t t d ?• How hard is that port to do?

• How much code can we reuse?o uc code ca e euse

• What performance do we get?

23-Sep-09 8

Characteristics of GPUsCharacteristics of GPUs
Tesla C1060 GPU:

240 ltith d d
Cell/B.E.:

8• 240 multithreaded
coprocessor cores

• Cores execute in

• 8 coprocessor cores

C l t l• Cores execute in
(partial) lock-step

• 4GB device memory

• Cores are completely
independent

• Limited local storagey
• Slow device-to-RAM

data transfers

Limited local storage
• Fast transfers from

RAM to local storage
• Program in CUDA,

OpenCL

g
• Program in C, C++

23-Sep-09 9
Very different concepts; low-level code is not portable

Prototype Sourcery VSIPL++ for CUDAPrototype Sourcery VSIPL++ for CUDA
• Part 1: Selected functions computed on GPU:

• Standard VSIPL++ functions:• Standard VSIPL++ functions:
• 1-D and 2-D FFT (from CUDAFFT library)
• FFTM (from CUDAFFT library)(y)
• Vector dot product (from CUDABLAS library)
• Vector-matrix elementwise multiplication

C l it d• Complex magnitude
• Copy, Transpose, FreqSwap

• Fused operations:used ope at o s
• Fast convolution
• FFTM and vector-matrix multiplication

23-Sep-09 10

Prototype Sourcery VSIPL++ for CUDAPrototype Sourcery VSIPL++ for CUDA
• Part 2: Data transfers to/from GPU device memory

• Support infrastructure• Support infrastructure
• Transfer of data between GPU and RAM
• Integration of CUDA kernels into libraryg y

• Integration with standard VSIPL++ blocks
D t till t d i t RAM• Data still stored in system RAM

• Transfers to GPU device memory as needed for
computations, and then back to system RAM

• Completely transparent to user

23-Sep-09 11

Everything so far requires no user code changes

Initial CUDA ResultsInitial CUDA Results
Initial CUDA results

F ti Ti P f
Baseline x86

Ti S dFunction Time Performance
Digital Spotlight

Fast-time filter 0.078 s 3.7 GF/s

Time Speedup

0.37 s 4.8
BW expansion 0.171 s 5.4 GF/s
Matched filter 0.144 s 4.8 GF/s

Interpolation

0.47 s 2.8
0.35 s 2.4

Interpolation
Range loop 1.099 s 0.8 GF/s
2D IFFT 0.142 s 6.0 GF/s

1.09 s -
0.38 s 2.7

Data Movement 0.215 s 1.8 GB/s
Overall 1.848 s

0.45 s 2.1
3.11 s 1.8

23-Sep-09 12

Almost a 2x speedup – but we can do better!

Digital Spotlighting ImprovementsDigital Spotlighting Improvements
• Code here is almost all high-level VSIPL++ functions

• Problem: Computations on GPU, data stored in RAM
• Each function requires a data round-tripq p

• Solution: New VSIPL++ Block type: Gpu_block
M d t b t RAM d GPU d d• Moves data between RAM and GPU as needed

• Stores data where it was last touched

• Requires a simple code change to declarations:
typedef Vector<float, Gpu_block>
real ector t pereal_vector_type;

23-Sep-09 13

Gpu block CUDA ResultsGpu_block CUDA Results
Initial CUDA results

F ti Ti P f
Baseline x86

Ti S dFunction Time Performance
Digital Spotlight

Fast-time filter 0.078 s 3.7 GF/s

Time Speedup

0.37 s 4.8
BW expansion 0.171 s 5.4 GF/s
Matched filter 0.144 s 4.8 GF/s

0.47 s 2.8
0.35 s 2.4

Gpu_block CUDA results
Digital Spotlight

f 0 023 12 8 G /

Baseline x86

0 3 16 3Fast-time filter 0.023 s 12.8 GF/s
BW expansion 0.059 s 15.7 GF/s
Matched filter 0.033 s 21.4 GF/s

0.37 s 16.3
0.47 s 8.0
0.35 s 10.8

23-Sep-09 14
Maintaining data on GPU provides 3x-4x additional speedup

Interpolation ImprovementsInterpolation Improvements
• Range Loop takes most of the computation time

• Does not reduce to high level VSIPL++ calls• Does not reduce to high-level VSIPL++ calls

• As with Cell/B.E., we write a custom “user kernel” to
accelerate this on the coprocessor.
• Sourcery VSIPL++ handles data movement, and

provides access to data in GPU device memory.provides access to data in GPU device memory.
• Much simpler than using CUDA directly

• User kernel only needs to supply computation code
• ~150 source lines

23-Sep-09 15

Optimized CUDA ResultsOptimized CUDA Results
Optimized CUDA

F ti Ti P f
Baseline x86

Ti S dFunction Time Performance
Digital Spotlight

Fast-time filter 0.023 s 12.8 GF/s

Time Speedup

0.37 s 16.3
BW expansion 0.059 s 15.7 GF/s
Matched filter 0.033 s 21.4 GF/s

Interpolation

0.47 s 8.0
0.35 s 10.8

Interpolation
Range loop 0.262 s 3.2 GF/s
2D IFFT 0.036 s 23.6 GF/s

1.09 s 4.1
0.38 s 10.5

Data Movement 0.095 s 4.0 GB/s
Overall 0.509 s

0.45 s 4.7
3.11 s 6.1

23-Sep-09 16

Result with everything on the GPU: a 6x speedup.

ConclusionsConclusions
• Sourcery VSIPL++ for CUDA GPUs

• Prototype code exists now• Prototype code exists now
• Contains everything needed for SSAR application

• Porting code to new targets with Sourcery VSIPL++
works with realistic code in practice.
• GPUs are very different from Cell/B E but:• GPUs are very different from Cell/B.E., but:
• “50% performance” with zero code changes
• Much better performance with minimal changes
• And can easily hook in rewritten key kernels for best

performance.

23-Sep-09 17

