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Introduction 

Sourcery VSIPL++ for CUDA implements the open-

standard VSIPL++ signal- and image-processing API on 

NVIDIA CUDA-compatible GPU processors.  This 

presentation will describe the challenges in writing 

programs that target GPUs and some of the advantages of 

the VSIPL++ open-standard API for this purpose, the 

programming model used in supporting GPUs within 

Sourcery VSIPL++, and the performance results obtained 

with this implementation on the Scalable SAR synthetic 

benchmark application [5]. 

In particular, Sourcery VSIPL++ provides a way of writing 

applications at a high level that can be ported easily to new 

and diverse hardware, with relatively few source-code 

changes to take advantage of the particular specialties of 

that hardware.  In the present high-performance embedded 

computing world, the expected lifetime of software is much 

longer than that of hardware.  This presentation will 

demonstrate that Sourcery VSIPL++ for CUDA can be used 

to achieve significant performance improvements on 

realistic applications, and that code based on it can be 

readily ported to future generations of hardware. 

CodeSourcery has released a preview version of the CUDA 

support in Sourcery VSIPL++ version 2.1.  Work on this is 

ongoing; additional support will be included in version 2.2 

and will be described in our HPEC 2009 presentation. 

The  Sourcery VSIPL++ Library 

Sourcery VSIPL++ [1] is a C++ library for developing 

high-performance signal and image-processing programs in 

a portable manner using the VSIPL++ standard API [2].  It 

provides a standard interface for multi-dimensional array 

data, as well as common operations (FFTs, convolutions, 

linear-algebraic operations and solvers, elementwise 

operations, and so forth) on that array data. 

In this interface, the logical representation of the data is 

separated from the physical representation in computer 

memory.  To change an array from a row-major storage to a 

column-major storage, or even to distribute it across the 

memory of multiple processors operating in parallel, a 

developer need only change the portions of the code in 

which the arrays are declared; the remainder of the program 

remains unchanged. 

Similarly, the syntax of common operations on this data is 

standardized independently of the implementation.  This 

again separates the developer’s code from the details of the 

implementation.  The choice of hardware target, data 

layout, compilation options, and back-end library 

availability determines whether a given FFT call (for 

example) uses a back-end from NVIDIA’s CUDA libraries, 

Intel’s Integrated Performance Primitives (IPP), Mercury’s 

Scientific Algorithm Library (SAL), the FFTW library, or 

CodeSourcery’s Cell Math Library (CML) for the Cell/B.E. 

processor.  Much of this dispatch logic occurs at compile-

time, and thus incurs a minimal run-time cost. 

This separation between the library syntax and 

implementation allows for a range of optimizations within 

the library.  For example, in some cases, Sourcery 

VSIPL++ can recognize a sequence of an FFT, a vector 

elementwise multiplication, and an inverse FFT as a fast-

convolution operation, and dispatch this to a combined 

function that executes faster than the components would 

individually.  Similarly, sequences of elementwise 

operations can be fused into a single loop over the array 

elements, rather than individual loops for each operation. 

Thus, applications based on Sourcery VSIPL++ can be 

readily ported to new architectures, and can take advantage 

of performance optimizations for those architectures with a 

minimum of reprogramming [5]. 

GPUs for High-Performance Computing 

A recent trend in high-performance computing is the use of 

graphical co-processors (GPUs) for numerical 

computations.  NVIDIA and AMD offer software 

development kits for performing numerical computations 

using off-the-shelf graphics cards, as well as coprocessor 

cards specifically intended for such use [3, 4]. 

GPUs provide a very attractive option for numerical 

computations.  On appropriate types of computations, they 

can provide very high computational speed, with rates on 

the order of a teraflop (10
12

 floating-point operations per 

second) for single-precision calculations [3, 4].  In addition, 

GPUs typically have a very high-bandwidth connection to 

large amounts of coprocessor-local memory (for example, 4 

GB of GDDR3 RAM with a connection speed of around 

100GB/s, on a NVIDIA Tesla C1060 card [3]), which can 

be attractive for certain classes of bandwidth-limited 

applications. 

However, obtaining good performance from GPUs is 

challenging.  The programming model is very different 

from CPUs; a GPU consists of dozens or hundreds of 

compute units, each of which is hardware-multithreaded to 

execute dozens of copies of the same small set of 

instructions on elements of array data.  As a result, full 

utilization of the GPU requires dividing the algorithm up 

into thousands of identical threads. 

These threads are very lightweight and limited in capability 

compared to typical threads on CPUs.  There is no direct 

inter-thread communication, and output from a thread is 

constrained to a specific indexed location within an output 

array.  Conditional branches within the threads are typically 

supported only to a very limited extent; the level of nesting 



 

 

is limited, and they are inefficient unless all threads take the 

same branch. 

In addition, GPUs share data-locality challenges with other 

coprocessors.  Although there is a large amount of fast local 

memory associated with the coprocessor, the data channel 

between this and the system memory is much slower; on the 

order of 4-6 GB/s (a factor of 20 less than the GPU-local 

memory bandwidth) in a typical system
1
.  Thus, it is 

important to avoid extraneous data movement between the 

GPU and the host system’s memory.  

Sourcery VSIPL++ GPU Programming Model 

The Sourcery VSIPL++ GPU programming model offers a 

range of GPU support.  Unmodified VSIPL++ code can 

take advantage of GPU-accelerated functions simply by 

recompilation with the appropriate version of the library, 

and additional performance improvements can be obtained 

with minimal source-code changes. 

Existing VSIPL++ data block types correspond to data 

stored in the system memory, and for these the GPU is used 

as a computational backend to accelerate individual 

VSIPL++ operations.  Thus, this model is applicable to 

unmodified user code, but each VSIPL++ operation that 

executes on the GPU requires the library to move the data 

from the system memory to the GPU prior to the operation, 

and move it back afterwards. 

Sourcery VSIPL++ for CUDA also introduces a new GPU-

aware data block type, which represents an array that the 

library can store either in system memory or in the GPU’s 

memory.  This allows the library to only perform data 

movement when it is necessary.  When sequential GPU 

operations are performed on data stored in a GPU-aware 

block, the data will remain in the GPU memory between the 

operations, and will only be returned to system memory 

when the CPU requires access to it.  In order to use the 

GPU-aware block data storage within a VSIPL++ 

application, the only required changes are to the declaration 

of the relevant array objects. 

As of this writing, we have included preliminary 

implementations of GPU operations in Sourcery VSIPL++ 

that are based on the CUDA FFT and BLAS backends.  We 

anticipate expanding these to include optimizations and 

significant additional functionality, particularly with 

regards to fused operations, and will describe the details of 

that in our presentation. 

Results Preview 

The following results will be presented at HPEC 2009. 

First, we will discuss the state of GPU support in available 

versions of Sourcery VSIPL++.  In particular, we will 

mention the range of functions that are accelerated using 

the GPU, and provide performance data indicating the 

speedups that can be expected by using them and the 

conditions in which they are useful. 

                                                           
1 As measured on our NVIDIA Tesla C1060-based development system. 

Second, we will demonstrate the performance of our GPU 

support on an existing VSIPL++ application — the Scalable 

SAR synthetic benchmark algorithm used in previous 

Sourcery VSIPL++ presentations [5] — and describe the 

performance improvements obtained with varying amounts 

of optimization to the existing code, as well as the code 

modifications required to implement those optimizations. 

Conclusion 

The VSIPL++ programming model allows programmers to 

easily port VSIPL++ programs to run on GPUs supported 

by Sourcery VSIPL++.   Many of the accommodations 

required to obtain good performance on GPUs can be 

encapsulated within the library, such as usage of parallel 

functions and reducing data movement between the GPU 

and system memory. 
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