

Sourcery VSIPL++ for NVIDIA CUDA GPUs
Don McCoy, Brooks Moses, Stefan Seefeld, Mike LeBlanc, Jules Bergmann

CodeSourcery, Inc.

{don, brooks, stefan, mike, jules }@codesourcery.com

Introduction

Sourcery VSIPL++ for CUDA implements the open-

standard VSIPL++ signal- and image-processing API on

NVIDIA CUDA-compatible GPU processors. This

presentation will describe the challenges in writing

programs that target GPUs and some of the advantages of

the VSIPL++ open-standard API for this purpose, the

programming model used in supporting GPUs within

Sourcery VSIPL++, and the performance results obtained

with this implementation on the Scalable SAR synthetic

benchmark application [5].

In particular, Sourcery VSIPL++ provides a way of writing

applications at a high level that can be ported easily to new

and diverse hardware, with relatively few source-code

changes to take advantage of the particular specialties of

that hardware. In the present high-performance embedded

computing world, the expected lifetime of software is much

longer than that of hardware. This presentation will

demonstrate that Sourcery VSIPL++ for CUDA can be used

to achieve significant performance improvements on

realistic applications, and that code based on it can be

readily ported to future generations of hardware.

CodeSourcery has released a preview version of the CUDA

support in Sourcery VSIPL++ version 2.1. Work on this is

ongoing; additional support will be included in version 2.2

and will be described in our HPEC 2009 presentation.

The Sourcery VSIPL++ Library

Sourcery VSIPL++ [1] is a C++ library for developing

high-performance signal and image-processing programs in

a portable manner using the VSIPL++ standard API [2]. It

provides a standard interface for multi-dimensional array

data, as well as common operations (FFTs, convolutions,

linear-algebraic operations and solvers, elementwise

operations, and so forth) on that array data.

In this interface, the logical representation of the data is

separated from the physical representation in computer

memory. To change an array from a row-major storage to a

column-major storage, or even to distribute it across the

memory of multiple processors operating in parallel, a

developer need only change the portions of the code in

which the arrays are declared; the remainder of the program

remains unchanged.

Similarly, the syntax of common operations on this data is

standardized independently of the implementation. This

again separates the developer’s code from the details of the

implementation. The choice of hardware target, data

layout, compilation options, and back-end library

availability determines whether a given FFT call (for

example) uses a back-end from NVIDIA’s CUDA libraries,

Intel’s Integrated Performance Primitives (IPP), Mercury’s

Scientific Algorithm Library (SAL), the FFTW library, or

CodeSourcery’s Cell Math Library (CML) for the Cell/B.E.

processor. Much of this dispatch logic occurs at compile-

time, and thus incurs a minimal run-time cost.

This separation between the library syntax and

implementation allows for a range of optimizations within

the library. For example, in some cases, Sourcery

VSIPL++ can recognize a sequence of an FFT, a vector

elementwise multiplication, and an inverse FFT as a fast-

convolution operation, and dispatch this to a combined

function that executes faster than the components would

individually. Similarly, sequences of elementwise

operations can be fused into a single loop over the array

elements, rather than individual loops for each operation.

Thus, applications based on Sourcery VSIPL++ can be

readily ported to new architectures, and can take advantage

of performance optimizations for those architectures with a

minimum of reprogramming [5].

GPUs for High-Performance Computing

A recent trend in high-performance computing is the use of

graphical co-processors (GPUs) for numerical

computations. NVIDIA and AMD offer software

development kits for performing numerical computations

using off-the-shelf graphics cards, as well as coprocessor

cards specifically intended for such use [3, 4].

GPUs provide a very attractive option for numerical

computations. On appropriate types of computations, they

can provide very high computational speed, with rates on

the order of a teraflop (10
12

 floating-point operations per

second) for single-precision calculations [3, 4]. In addition,

GPUs typically have a very high-bandwidth connection to

large amounts of coprocessor-local memory (for example, 4

GB of GDDR3 RAM with a connection speed of around

100GB/s, on a NVIDIA Tesla C1060 card [3]), which can

be attractive for certain classes of bandwidth-limited

applications.

However, obtaining good performance from GPUs is

challenging. The programming model is very different

from CPUs; a GPU consists of dozens or hundreds of

compute units, each of which is hardware-multithreaded to

execute dozens of copies of the same small set of

instructions on elements of array data. As a result, full

utilization of the GPU requires dividing the algorithm up

into thousands of identical threads.

These threads are very lightweight and limited in capability

compared to typical threads on CPUs. There is no direct

inter-thread communication, and output from a thread is

constrained to a specific indexed location within an output

array. Conditional branches within the threads are typically

supported only to a very limited extent; the level of nesting

is limited, and they are inefficient unless all threads take the

same branch.

In addition, GPUs share data-locality challenges with other

coprocessors. Although there is a large amount of fast local

memory associated with the coprocessor, the data channel

between this and the system memory is much slower; on the

order of 4-6 GB/s (a factor of 20 less than the GPU-local

memory bandwidth) in a typical system
1
. Thus, it is

important to avoid extraneous data movement between the

GPU and the host system’s memory.

Sourcery VSIPL++ GPU Programming Model

The Sourcery VSIPL++ GPU programming model offers a

range of GPU support. Unmodified VSIPL++ code can

take advantage of GPU-accelerated functions simply by

recompilation with the appropriate version of the library,

and additional performance improvements can be obtained

with minimal source-code changes.

Existing VSIPL++ data block types correspond to data

stored in the system memory, and for these the GPU is used

as a computational backend to accelerate individual

VSIPL++ operations. Thus, this model is applicable to

unmodified user code, but each VSIPL++ operation that

executes on the GPU requires the library to move the data

from the system memory to the GPU prior to the operation,

and move it back afterwards.

Sourcery VSIPL++ for CUDA also introduces a new GPU-

aware data block type, which represents an array that the

library can store either in system memory or in the GPU’s

memory. This allows the library to only perform data

movement when it is necessary. When sequential GPU

operations are performed on data stored in a GPU-aware

block, the data will remain in the GPU memory between the

operations, and will only be returned to system memory

when the CPU requires access to it. In order to use the

GPU-aware block data storage within a VSIPL++

application, the only required changes are to the declaration

of the relevant array objects.

As of this writing, we have included preliminary

implementations of GPU operations in Sourcery VSIPL++

that are based on the CUDA FFT and BLAS backends. We

anticipate expanding these to include optimizations and

significant additional functionality, particularly with

regards to fused operations, and will describe the details of

that in our presentation.

Results Preview

The following results will be presented at HPEC 2009.

First, we will discuss the state of GPU support in available

versions of Sourcery VSIPL++. In particular, we will

mention the range of functions that are accelerated using

the GPU, and provide performance data indicating the

speedups that can be expected by using them and the

conditions in which they are useful.

1 As measured on our NVIDIA Tesla C1060-based development system.

Second, we will demonstrate the performance of our GPU

support on an existing VSIPL++ application — the Scalable

SAR synthetic benchmark algorithm used in previous

Sourcery VSIPL++ presentations [5] — and describe the

performance improvements obtained with varying amounts

of optimization to the existing code, as well as the code

modifications required to implement those optimizations.

Conclusion

The VSIPL++ programming model allows programmers to

easily port VSIPL++ programs to run on GPUs supported

by Sourcery VSIPL++. Many of the accommodations

required to obtain good performance on GPUs can be

encapsulated within the library, such as usage of parallel

functions and reducing data movement between the GPU

and system memory.

References

[1] CodeSourcery, Inc. Sourcery VSIPL++. [online]

http://www.codesourcery.com/vsiplplusplus.

[2] CodeSourcery, Inc. VSIPL++ Parallel Specification

1.0. Georgia Tech Res. Corp. 2005 [online]

http://www.hpec-si.org.

[3] NVIDIA Corporation. NVIDIA Tesla C1060

Computing Processor Specifications. 2009. [online]

http://www.nvidia.com/object/product_tesla_c1060_us.

html.

[4] AMD, Inc. AMD Firestream 9270. 2009. [online]

http://ati.amd.com/technology/streamcomputing/

product_firestream_9270.html.

[5] J. Bergmann, M. LeBlanc, D. McCoy, B. Moses and S.

Seefeld. Scalable SAR with Sourcery VSIPL++ for the

Cell/B.E. HPEC Workshop Proceedings. 2008.

[online] http://www.ll.mit.edu/HPEC/agendas/proc08/

agenda.html.

