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Introduction
Exploring GPGPU Library Construction Issues
Libraries faster than automatic tools
Many differences to traditional CPU libraries

What are the important library parameters?
GPUs are accelerator boards

Outline
CUDA implementation issues
Support Infrastructure: Matlab OpenCL API (MOCA)
Tumor tracking MATLAB application
Implementation status and performance
Observations and future directions
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Mapping Functionality to CUDA
Balancing several factors

Kernel complexity & limited register count
Mostly explicit memory placement options

Shared memory: can be as fast as registers, possible 
memory bank conflict issues

Texture and constant memory: read only and cached, texture 
memory optimized for 2D and 3D accesses

Global memory: slowest

CUDA blocks and threads hierarchy
Threads have access to shared data
Want enough threads to cover latencies
Need enough blocks to fill current & future GPUs

Detailed knowledge of hardware is necessary to get 
best performance
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Memory Selection Issue
Different memory types

Performance varies
Limitations (size) vary

Shared memory internal 
to block

Global, constant, and 
texture memory can be 
used for kernel inputs

What is the optimal 
selection for memory 
types?
Large search space
Each memory type has 

distinct usage in code
Image: NVIDIA CUDA Programming Guide 2.0

http://www.nvidia.com/object/cuda_develop.html
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GPU Interfacing Issues
Precision: GPU calculation generally in single 

precision floating point
Recent GPUs include support for double precision

10x performance hit for Nvidia (less for ATI)
Likely many instances where single precision GPU is 

okay in a larger double precision application: 
prototyping, absolute speed, working with existing apps
Data type conversion needed

Memory: CUDA requires CUDA-allocated host 
memory for asynchronous data transfers (also faster 
for large transfers)
Data copy may be introduced when the source memory 

type cannot be controlled
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CPU/GPU Mapping Issues
Want each algorithm step mapped to the right 

device (CPU or GPU) - affects:
Number/type of kernel invocations
Number and size of data transfers
Possibilities for concurrent execution

Interplay of these issues can be complicated
Elimination of inefficient kernels

Extra data transfers for CPU computed values if base 
data still needed

Simultaneous CPU/GPU computation
Optimal mapping may put a given algorithm step on a 

suboptimal device
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Matlab OpenCL API (MOCA)
Large space for application mappings

Code management issues
Lots of similar code
Different code for different memory types
Managing host-side operations vs. GPU-kernel invocations

MOCA aids implementation space exploration
Currently binds to CUDA, but aiming to be generic
Raises the level of abstraction for faster development

Data structures track multiple aspects of host and GPU
resources

Functions wrap up numerous API calls into tasks
Front end catches some errors producing useful diagnostics

Isolates CUDA code for a given activity to one location
Focused on host code development
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Lung Tumor Tracking
Working with research by Ying Cui, Jennifer Dy, 

Gregory Sharp, Brian Alexander, and Steve Jiang
Represent Northeastern University, Massachusetts 

General Hospital, Harvard Medical School, and 
University of California San Diego

Some tumors move significantly during breathing
Therapy targets large area with weak radiation – 

prevents damage normal tissue
Goal is to use higher-intensity focused radiation without 

implanted markers
Two template-based tracking algorithms proposed:

Motion-enhanced templates and Pearson’s correlation
Eigen templates and mean-squared error
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Motion Enhancement

Motion enhanced image is difference between the 
image and average of images used for templates
Moving structures are emphasized

Pearson's correlation is used to measure similarity 
between motion enhanced templates and frame ROIs

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template 
Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers," 
Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.

Static
Image

Motion 
Enhanced
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Tumor Marking Tool

Templates are generated with a MATLAB tool

Would be created by clinician
Wide variation in template size based on tumor size and human 

factors
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Multiple Templates

Image brightness & tumor position varies during breathing
Periodic: multiple representative templates from different 

points in the respiration cycle are used to compensate

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template 
Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers," 
Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.



12

Sliding Window Correlation
Also allow template location 

variation for improved 
tracking
All template positions within 

the region of interest (ROI) 
are checked

Each template is applied to 
all positions within the frame 
data ROIs for each frame
Static datasets of a large 

number of images
Interested in accelerating 

development of algorithms
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MATLAB M-Code Implementation
Pearson's correlation is 

corr2 from the Image 
Processing Toolbox

Four nested for loops 
generate all the 
necessary correlations

Large number of 
correlations represent 
82% of runtime

Only other significant 
contributor: image file I/O 
and conversion: 4.6%

for i=1:numFrames

 for j=1:numTemplates

  for k = -lrShift:lrShift

   for m= -udShift:udShift

    curCorr =

         corr2(curT,curF);

   end               

  end

 end

end

Looping pseudocode without 
image indexing or similarity 

score keeping
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corr2() Function (1)

All corr2 calls run at once to exploit parallelism on 
GPU

Large amount of computation redundancy
Matrix averages reused frequently
Denominator calculation used repeatedly
Relatively few templates applied to many frames

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2
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corr2() Function (2)

Possible to implement optimizations in MATLAB
Not typically done by MATLAB users
Optimized MATLAB parallel corr2() was created to 

determine correctness of GPU implementation
Multiple kernels required

Hardware constraints
Take advantage of redundant computation

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2
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corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and 

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of 
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2
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Reference Dataset

Patient Frames Templates Template Dimensions Shift V/H corr2() Calls
1 442 12 53x54 18/9 3532464
2 348 13 23x21 11/5 1144572
3 259 10 76x45 9/4 442890
4 290 11 116x175 9/3 424270
5 293 12 78x109 11/6 979524
6 210 14 107x159 9/2 279300

Reference data set includes six patients with manually specified 
tumor location for each frame
All the parameters vary

Existing application parameters not based on powers of two
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CUDA corr2() Implementation
Frames/templates mapped to threads in a block

Frames: not multiple of 64, but within appropriate range 
Templates: not efficient

Template locations in the frame data ROI are mapped 
to block grid
95 to 703 blocks for frame kernels
1 block for template kernels: not efficient

Numerator and Final Multiplication combine frame 
and template statistics
4-dimensional data
Kernels combines one frame set with one template

 Invocation for each template required
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Experimental Setup
Used MOCA to examine multiple GPU memory 

mappings of the template matching kernels
Global memory only
Frame data in texture memory
Template data in texture memory

Benchmarking Platform
Ubuntu 9.04 64-bit
GeForce 8800 GTX w/ CUDA 2.3
Intel Core 2 Duo E8400 (3 GHz, 6 MB L2)
GCC 4.2.4
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Global Memory Only
Compared original MATLAB, 

optimized MATLAB and global 
only GPU version

Optimized MATLAB 
implemented similarly to GPU
Six steps like GPU kernels
Loops flattened
Reuses averages and 

denominators

GPU implementations vary in 
performance
Includes conversion from 

double to single precision
End-to-end timing, including 

data transfers
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Global Memory Only
Patient 2 template and 

frame ROI sizes are 
smallest, results in best 
memory read performance

Non-coalesced data reads 
are the sticking point
Each thread works on a 

different frame
Stride between frames is 

large
Need to address: data 

reorganization or 
thread/grid mapping
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Textured Frame Memory
There are many 

redundant frame data 
reads for any kernel 
touching the frame 
data
Moved frame data to 

texture memory
Minor performance 

differences
Locality not enough 

for textures to provide 
a benefit
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Textured Template Memory
Numerator threads each read 

the same template
Global memory not cached
Currently too large for shared 

memory

Putting template data in 
texture memory shows some 
improvement
Enough locality for textures to 

cache some reads

MOCA makes it easier to 
explore implementations
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Textured Template Memory
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Conclusions

Global Memory Textured Frames Textured Templates
Best Speedup 85 92 133
Average Speedup 22 23 31

Memory placement is an important performance factor
Even with sub-optimal kernels
Important when applying a library of kernels to multiple 

problems

MOCA aids prototyping and implementation space 
exploration
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Future Work
Template Matching

Add data reorganization for more coalesced memory 
accesses
Another host-side operation that may be common

MOCA Improvements
Extend to support asynchronous operations
Increase automation of implementation space exploration
OpenCL back end

Other applications: eigen template algorithm or new 
application

Focus on the optimal dimensions for parameterization 
and representation within a library
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Thank You

Nicholas Moore, Miriam Leeser
{nmoore,mel}@coe.neu.edu
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