
Accelerating a MATLAB Application
with Nvidia GPUs: a Case Study for

GPU Library Construction

Nicholas Moore, Miriam Leeser
{nmoore,mel}@coe.neu.edu

23 September 2009

2

Introduction
Exploring GPGPU Library Construction Issues
Libraries faster than automatic tools
Many differences to traditional CPU libraries

What are the important library parameters?
GPUs are accelerator boards

Outline
CUDA implementation issues
Support Infrastructure: Matlab OpenCL API (MOCA)
Tumor tracking MATLAB application
Implementation status and performance
Observations and future directions

3

Mapping Functionality to CUDA
Balancing several factors

Kernel complexity & limited register count
Mostly explicit memory placement options

Shared memory: can be as fast as registers, possible
memory bank conflict issues

Texture and constant memory: read only and cached, texture
memory optimized for 2D and 3D accesses

Global memory: slowest

CUDA blocks and threads hierarchy
Threads have access to shared data
Want enough threads to cover latencies
Need enough blocks to fill current & future GPUs

Detailed knowledge of hardware is necessary to get
best performance

4

Memory Selection Issue
Different memory types

Performance varies
Limitations (size) vary

Shared memory internal
to block

Global, constant, and
texture memory can be
used for kernel inputs

What is the optimal
selection for memory
types?
Large search space
Each memory type has

distinct usage in code
Image: NVIDIA CUDA Programming Guide 2.0

http://www.nvidia.com/object/cuda_develop.html

5

GPU Interfacing Issues
Precision: GPU calculation generally in single

precision floating point
Recent GPUs include support for double precision

10x performance hit for Nvidia (less for ATI)
Likely many instances where single precision GPU is

okay in a larger double precision application:
prototyping, absolute speed, working with existing apps
Data type conversion needed

Memory: CUDA requires CUDA-allocated host
memory for asynchronous data transfers (also faster
for large transfers)
Data copy may be introduced when the source memory

type cannot be controlled

6

CPU/GPU Mapping Issues
Want each algorithm step mapped to the right

device (CPU or GPU) - affects:
Number/type of kernel invocations
Number and size of data transfers
Possibilities for concurrent execution

Interplay of these issues can be complicated
Elimination of inefficient kernels

Extra data transfers for CPU computed values if base
data still needed

Simultaneous CPU/GPU computation
Optimal mapping may put a given algorithm step on a

suboptimal device

7

Matlab OpenCL API (MOCA)
Large space for application mappings

Code management issues
Lots of similar code
Different code for different memory types
Managing host-side operations vs. GPU-kernel invocations

MOCA aids implementation space exploration
Currently binds to CUDA, but aiming to be generic
Raises the level of abstraction for faster development

Data structures track multiple aspects of host and GPU
resources

Functions wrap up numerous API calls into tasks
Front end catches some errors producing useful diagnostics

Isolates CUDA code for a given activity to one location
Focused on host code development

8

Lung Tumor Tracking
Working with research by Ying Cui, Jennifer Dy,

Gregory Sharp, Brian Alexander, and Steve Jiang
Represent Northeastern University, Massachusetts

General Hospital, Harvard Medical School, and
University of California San Diego

Some tumors move significantly during breathing
Therapy targets large area with weak radiation –

prevents damage normal tissue
Goal is to use higher-intensity focused radiation without

implanted markers
Two template-based tracking algorithms proposed:

Motion-enhanced templates and Pearson’s correlation
Eigen templates and mean-squared error

9

Motion Enhancement

Motion enhanced image is difference between the
image and average of images used for templates
Moving structures are emphasized

Pearson's correlation is used to measure similarity
between motion enhanced templates and frame ROIs

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template
Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers,"
Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.

Static
Image

Motion
Enhanced

10

Tumor Marking Tool

Templates are generated with a MATLAB tool

Would be created by clinician
Wide variation in template size based on tumor size and human

factors

11

Multiple Templates

Image brightness & tumor position varies during breathing
Periodic: multiple representative templates from different

points in the respiration cycle are used to compensate

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template
Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers,"
Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.

12

Sliding Window Correlation
Also allow template location

variation for improved
tracking
All template positions within

the region of interest (ROI)
are checked

Each template is applied to
all positions within the frame
data ROIs for each frame
Static datasets of a large

number of images
Interested in accelerating

development of algorithms

13

MATLAB M-Code Implementation
Pearson's correlation is

corr2 from the Image
Processing Toolbox

Four nested for loops
generate all the
necessary correlations

Large number of
correlations represent
82% of runtime

Only other significant
contributor: image file I/O
and conversion: 4.6%

for i=1:numFrames

 for j=1:numTemplates

 for k = -lrShift:lrShift

 for m= -udShift:udShift

 curCorr =

 corr2(curT,curF);

 end

 end

 end

end

Looping pseudocode without
image indexing or similarity

score keeping

14

corr2() Function (1)

All corr2 calls run at once to exploit parallelism on
GPU

Large amount of computation redundancy
Matrix averages reused frequently
Denominator calculation used repeatedly
Relatively few templates applied to many frames

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

15

corr2() Function (2)

Possible to implement optimizations in MATLAB
Not typically done by MATLAB users
Optimized MATLAB parallel corr2() was created to

determine correctness of GPU implementation
Multiple kernels required

Hardware constraints
Take advantage of redundant computation

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

16

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

17

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

18

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

19

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

20

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

21

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

22

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

23

Reference Dataset

Patient Frames Templates Template Dimensions Shift V/H corr2() Calls
1 442 12 53x54 18/9 3532464
2 348 13 23x21 11/5 1144572
3 259 10 76x45 9/4 442890
4 290 11 116x175 9/3 424270
5 293 12 78x109 11/6 979524
6 210 14 107x159 9/2 279300

Reference data set includes six patients with manually specified
tumor location for each frame
All the parameters vary

Existing application parameters not based on powers of two

24

CUDA corr2() Implementation
Frames/templates mapped to threads in a block

Frames: not multiple of 64, but within appropriate range
Templates: not efficient

Template locations in the frame data ROI are mapped
to block grid
95 to 703 blocks for frame kernels
1 block for template kernels: not efficient

Numerator and Final Multiplication combine frame
and template statistics
4-dimensional data
Kernels combines one frame set with one template

 Invocation for each template required

25

Experimental Setup
Used MOCA to examine multiple GPU memory

mappings of the template matching kernels
Global memory only
Frame data in texture memory
Template data in texture memory

Benchmarking Platform
Ubuntu 9.04 64-bit
GeForce 8800 GTX w/ CUDA 2.3
Intel Core 2 Duo E8400 (3 GHz, 6 MB L2)
GCC 4.2.4

26

Global Memory Only
Compared original MATLAB,

optimized MATLAB and global
only GPU version

Optimized MATLAB
implemented similarly to GPU
Six steps like GPU kernels
Loops flattened
Reuses averages and

denominators

GPU implementations vary in
performance
Includes conversion from

double to single precision
End-to-end timing, including

data transfers

27

Global Memory Only
Patient 2 template and

frame ROI sizes are
smallest, results in best
memory read performance

Non-coalesced data reads
are the sticking point
Each thread works on a

different frame
Stride between frames is

large
Need to address: data

reorganization or
thread/grid mapping

28

Textured Frame Memory
There are many

redundant frame data
reads for any kernel
touching the frame
data
Moved frame data to

texture memory
Minor performance

differences
Locality not enough

for textures to provide
a benefit

29

Textured Template Memory
Numerator threads each read

the same template
Global memory not cached
Currently too large for shared

memory

Putting template data in
texture memory shows some
improvement
Enough locality for textures to

cache some reads

MOCA makes it easier to
explore implementations

30

Textured Template Memory

31

Conclusions

Global Memory Textured Frames Textured Templates
Best Speedup 85 92 133
Average Speedup 22 23 31

Memory placement is an important performance factor
Even with sub-optimal kernels
Important when applying a library of kernels to multiple

problems

MOCA aids prototyping and implementation space
exploration

32

Future Work
Template Matching

Add data reorganization for more coalesced memory
accesses
Another host-side operation that may be common

MOCA Improvements
Extend to support asynchronous operations
Increase automation of implementation space exploration
OpenCL back end

Other applications: eigen template algorithm or new
application

Focus on the optimal dimensions for parameterization
and representation within a library

34

Thank You

Nicholas Moore, Miriam Leeser
{nmoore,mel}@coe.neu.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

