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Introduction
Exploring GPGPU Library Construction Issues
Libraries faster than automatic tools
Many differences to traditional CPU libraries

What are the important library parameters?
GPUs are accelerator boards

Outline
CUDA implementation issues
Support Infrastructure: Matlab OpenCL API (MOCA)
Tumor tracking MATLAB application
Implementation status and performance
Observations and future directions
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Mapping Functionality to CUDA
Balancing several factors

Kernel complexity & limited register count
Mostly explicit memory placement options

Shared memory: can be as fast as registers, possible 
memory bank conflict issues

Texture and constant memory: read only and cached, texture 
memory optimized for 2D and 3D accesses

Global memory: slowest

CUDA blocks and threads hierarchy
Threads have access to shared data
Want enough threads to cover latencies
Need enough blocks to fill current & future GPUs

Detailed knowledge of hardware is necessary to get 
best performance



4

Memory Selection Issue
Different memory types

Performance varies
Limitations (size) vary

Shared memory internal 
to block

Global, constant, and 
texture memory can be 
used for kernel inputs

What is the optimal 
selection for memory 
types?
Large search space
Each memory type has 

distinct usage in code
Image: NVIDIA CUDA Programming Guide 2.0

http://www.nvidia.com/object/cuda_develop.html
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GPU Interfacing Issues
Precision: GPU calculation generally in single 

precision floating point
Recent GPUs include support for double precision

10x performance hit for Nvidia (less for ATI)
Likely many instances where single precision GPU is 

okay in a larger double precision application: 
prototyping, absolute speed, working with existing apps
Data type conversion needed

Memory: CUDA requires CUDA-allocated host 
memory for asynchronous data transfers (also faster 
for large transfers)
Data copy may be introduced when the source memory 

type cannot be controlled
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CPU/GPU Mapping Issues
Want each algorithm step mapped to the right 

device (CPU or GPU) - affects:
Number/type of kernel invocations
Number and size of data transfers
Possibilities for concurrent execution

Interplay of these issues can be complicated
Elimination of inefficient kernels

Extra data transfers for CPU computed values if base 
data still needed

Simultaneous CPU/GPU computation
Optimal mapping may put a given algorithm step on a 

suboptimal device



7

Matlab OpenCL API (MOCA)
Large space for application mappings

Code management issues
Lots of similar code
Different code for different memory types
Managing host-side operations vs. GPU-kernel invocations

MOCA aids implementation space exploration
Currently binds to CUDA, but aiming to be generic
Raises the level of abstraction for faster development

Data structures track multiple aspects of host and GPU
resources

Functions wrap up numerous API calls into tasks
Front end catches some errors producing useful diagnostics

Isolates CUDA code for a given activity to one location
Focused on host code development
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Lung Tumor Tracking
Working with research by Ying Cui, Jennifer Dy, 

Gregory Sharp, Brian Alexander, and Steve Jiang
Represent Northeastern University, Massachusetts 

General Hospital, Harvard Medical School, and 
University of California San Diego

Some tumors move significantly during breathing
Therapy targets large area with weak radiation – 

prevents damage normal tissue
Goal is to use higher-intensity focused radiation without 

implanted markers
Two template-based tracking algorithms proposed:

Motion-enhanced templates and Pearson’s correlation
Eigen templates and mean-squared error
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Motion Enhancement

Motion enhanced image is difference between the 
image and average of images used for templates
Moving structures are emphasized

Pearson's correlation is used to measure similarity 
between motion enhanced templates and frame ROIs

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template 
Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers," 
Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.

Static
Image

Motion 
Enhanced
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Tumor Marking Tool

Templates are generated with a MATLAB tool

Would be created by clinician
Wide variation in template size based on tumor size and human 

factors



11

Multiple Templates

Image brightness & tumor position varies during breathing
Periodic: multiple representative templates from different 

points in the respiration cycle are used to compensate

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template 
Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers," 
Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.
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Sliding Window Correlation
Also allow template location 

variation for improved 
tracking
All template positions within 

the region of interest (ROI) 
are checked

Each template is applied to 
all positions within the frame 
data ROIs for each frame
Static datasets of a large 

number of images
Interested in accelerating 

development of algorithms



13

MATLAB M-Code Implementation
Pearson's correlation is 

corr2 from the Image 
Processing Toolbox

Four nested for loops 
generate all the 
necessary correlations

Large number of 
correlations represent 
82% of runtime

Only other significant 
contributor: image file I/O 
and conversion: 4.6%

for i=1:numFrames

 for j=1:numTemplates

  for k = -lrShift:lrShift

   for m= -udShift:udShift

    curCorr =

         corr2(curT,curF);

   end               

  end

 end

end

Looping pseudocode without 
image indexing or similarity 

score keeping
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corr2() Function (1)

All corr2 calls run at once to exploit parallelism on 
GPU

Large amount of computation redundancy
Matrix averages reused frequently
Denominator calculation used repeatedly
Relatively few templates applied to many frames

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2
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corr2() Function (2)

Possible to implement optimizations in MATLAB
Not typically done by MATLAB users
Optimized MATLAB parallel corr2() was created to 

determine correctness of GPU implementation
Multiple kernels required

Hardware constraints
Take advantage of redundant computation

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2
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corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and 

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of 
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2
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Reference Dataset

Patient Frames Templates Template Dimensions Shift V/H corr2() Calls
1 442 12 53x54 18/9 3532464
2 348 13 23x21 11/5 1144572
3 259 10 76x45 9/4 442890
4 290 11 116x175 9/3 424270
5 293 12 78x109 11/6 979524
6 210 14 107x159 9/2 279300

Reference data set includes six patients with manually specified 
tumor location for each frame
All the parameters vary

Existing application parameters not based on powers of two
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CUDA corr2() Implementation
Frames/templates mapped to threads in a block

Frames: not multiple of 64, but within appropriate range 
Templates: not efficient

Template locations in the frame data ROI are mapped 
to block grid
95 to 703 blocks for frame kernels
1 block for template kernels: not efficient

Numerator and Final Multiplication combine frame 
and template statistics
4-dimensional data
Kernels combines one frame set with one template

 Invocation for each template required



25

Experimental Setup
Used MOCA to examine multiple GPU memory 

mappings of the template matching kernels
Global memory only
Frame data in texture memory
Template data in texture memory

Benchmarking Platform
Ubuntu 9.04 64-bit
GeForce 8800 GTX w/ CUDA 2.3
Intel Core 2 Duo E8400 (3 GHz, 6 MB L2)
GCC 4.2.4
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Global Memory Only
Compared original MATLAB, 

optimized MATLAB and global 
only GPU version

Optimized MATLAB 
implemented similarly to GPU
Six steps like GPU kernels
Loops flattened
Reuses averages and 

denominators

GPU implementations vary in 
performance
Includes conversion from 

double to single precision
End-to-end timing, including 

data transfers
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Global Memory Only
Patient 2 template and 

frame ROI sizes are 
smallest, results in best 
memory read performance

Non-coalesced data reads 
are the sticking point
Each thread works on a 

different frame
Stride between frames is 

large
Need to address: data 

reorganization or 
thread/grid mapping
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Textured Frame Memory
There are many 

redundant frame data 
reads for any kernel 
touching the frame 
data
Moved frame data to 

texture memory
Minor performance 

differences
Locality not enough 

for textures to provide 
a benefit
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Textured Template Memory
Numerator threads each read 

the same template
Global memory not cached
Currently too large for shared 

memory

Putting template data in 
texture memory shows some 
improvement
Enough locality for textures to 

cache some reads

MOCA makes it easier to 
explore implementations
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Textured Template Memory
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Conclusions

Global Memory Textured Frames Textured Templates
Best Speedup 85 92 133
Average Speedup 22 23 31

Memory placement is an important performance factor
Even with sub-optimal kernels
Important when applying a library of kernels to multiple 

problems

MOCA aids prototyping and implementation space 
exploration
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Future Work
Template Matching

Add data reorganization for more coalesced memory 
accesses
Another host-side operation that may be common

MOCA Improvements
Extend to support asynchronous operations
Increase automation of implementation space exploration
OpenCL back end

Other applications: eigen template algorithm or new 
application

Focus on the optimal dimensions for parameterization 
and representation within a library
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Thank You

Nicholas Moore, Miriam Leeser
{nmoore,mel}@coe.neu.edu
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