
Accelerating a MATLAB Application
with Nvidia GPUs: a Case Study for

GPU Library Construction

Nicholas Moore, Miriam Leeser
{nmoore,mel}@coe.neu.edu

23 September 2009

2

Introduction
Exploring GPGPU Library Construction Issues
Libraries faster than automatic tools
Many differences to traditional CPU libraries

What are the important library parameters?
GPUs are accelerator boards

Outline
CUDA implementation issues
Support Infrastructure: Matlab OpenCL API (MOCA)
Tumor tracking MATLAB application
Implementation status and performance
Observations and future directions

3

Mapping Functionality to CUDA
Balancing several factors

Kernel complexity & limited register count
Mostly explicit memory placement options

Shared memory: can be as fast as registers, possible
memory bank conflict issues

Texture and constant memory: read only and cached, texture
memory optimized for 2D and 3D accesses

Global memory: slowest

CUDA blocks and threads hierarchy
Threads have access to shared data
Want enough threads to cover latencies
Need enough blocks to fill current & future GPUs

Detailed knowledge of hardware is necessary to get
best performance

4

Memory Selection Issue
Different memory types

Performance varies
Limitations (size) vary

Shared memory internal
to block

Global, constant, and
texture memory can be
used for kernel inputs

What is the optimal
selection for memory
types?
Large search space
Each memory type has

distinct usage in code
Image: NVIDIA CUDA Programming Guide 2.0

http://www.nvidia.com/object/cuda_develop.html

5

GPU Interfacing Issues
Precision: GPU calculation generally in single

precision floating point
Recent GPUs include support for double precision

10x performance hit for Nvidia (less for ATI)
Likely many instances where single precision GPU is

okay in a larger double precision application:
prototyping, absolute speed, working with existing apps
Data type conversion needed

Memory: CUDA requires CUDA-allocated host
memory for asynchronous data transfers (also faster
for large transfers)
Data copy may be introduced when the source memory

type cannot be controlled

6

CPU/GPU Mapping Issues
Want each algorithm step mapped to the right

device (CPU or GPU) - affects:
Number/type of kernel invocations
Number and size of data transfers
Possibilities for concurrent execution

Interplay of these issues can be complicated
Elimination of inefficient kernels

Extra data transfers for CPU computed values if base
data still needed

Simultaneous CPU/GPU computation
Optimal mapping may put a given algorithm step on a

suboptimal device

7

Matlab OpenCL API (MOCA)
Large space for application mappings

Code management issues
Lots of similar code
Different code for different memory types
Managing host-side operations vs. GPU-kernel invocations

MOCA aids implementation space exploration
Currently binds to CUDA, but aiming to be generic
Raises the level of abstraction for faster development

Data structures track multiple aspects of host and GPU
resources

Functions wrap up numerous API calls into tasks
Front end catches some errors producing useful diagnostics

Isolates CUDA code for a given activity to one location
Focused on host code development

8

Lung Tumor Tracking
Working with research by Ying Cui, Jennifer Dy,

Gregory Sharp, Brian Alexander, and Steve Jiang
Represent Northeastern University, Massachusetts

General Hospital, Harvard Medical School, and
University of California San Diego

Some tumors move significantly during breathing
Therapy targets large area with weak radiation –

prevents damage normal tissue
Goal is to use higher-intensity focused radiation without

implanted markers
Two template-based tracking algorithms proposed:

Motion-enhanced templates and Pearson’s correlation
Eigen templates and mean-squared error

9

Motion Enhancement

Motion enhanced image is difference between the
image and average of images used for templates
Moving structures are emphasized

Pearson's correlation is used to measure similarity
between motion enhanced templates and frame ROIs

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template
Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers,"
Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.

Static
Image

Motion
Enhanced

10

Tumor Marking Tool

Templates are generated with a MATLAB tool

Would be created by clinician
Wide variation in template size based on tumor size and human

factors

11

Multiple Templates

Image brightness & tumor position varies during breathing
Periodic: multiple representative templates from different

points in the respiration cycle are used to compensate

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template
Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers,"
Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.

12

Sliding Window Correlation
Also allow template location

variation for improved
tracking
All template positions within

the region of interest (ROI)
are checked

Each template is applied to
all positions within the frame
data ROIs for each frame
Static datasets of a large

number of images
Interested in accelerating

development of algorithms

13

MATLAB M-Code Implementation
Pearson's correlation is

corr2 from the Image
Processing Toolbox

Four nested for loops
generate all the
necessary correlations

Large number of
correlations represent
82% of runtime

Only other significant
contributor: image file I/O
and conversion: 4.6%

for i=1:numFrames

 for j=1:numTemplates

 for k = -lrShift:lrShift

 for m= -udShift:udShift

 curCorr =

 corr2(curT,curF);

 end

 end

 end

end

Looping pseudocode without
image indexing or similarity

score keeping

14

corr2() Function (1)

All corr2 calls run at once to exploit parallelism on
GPU

Large amount of computation redundancy
Matrix averages reused frequently
Denominator calculation used repeatedly
Relatively few templates applied to many frames

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

15

corr2() Function (2)

Possible to implement optimizations in MATLAB
Not typically done by MATLAB users
Optimized MATLAB parallel corr2() was created to

determine correctness of GPU implementation
Multiple kernels required

Hardware constraints
Take advantage of redundant computation

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

16

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

17

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

18

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

19

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

20

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

21

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

22

corr2() Function (3)

Six separate kernels:
Separate average and denominator kernels for frame and

template data
Numerator
Final multiplication

Grid represents up/down and left/right shifts of
templates within a frame's ROI; thread for each frame

corr2A ,B=
∑
M
∑
N

AMN−A BMN−B

∑
M
∑
N

AMN−A2∑
M
∑
N

BMN−B2

23

Reference Dataset

Patient Frames Templates Template Dimensions Shift V/H corr2() Calls
1 442 12 53x54 18/9 3532464
2 348 13 23x21 11/5 1144572
3 259 10 76x45 9/4 442890
4 290 11 116x175 9/3 424270
5 293 12 78x109 11/6 979524
6 210 14 107x159 9/2 279300

Reference data set includes six patients with manually specified
tumor location for each frame
All the parameters vary

Existing application parameters not based on powers of two

24

CUDA corr2() Implementation
Frames/templates mapped to threads in a block

Frames: not multiple of 64, but within appropriate range
Templates: not efficient

Template locations in the frame data ROI are mapped
to block grid
95 to 703 blocks for frame kernels
1 block for template kernels: not efficient

Numerator and Final Multiplication combine frame
and template statistics
4-dimensional data
Kernels combines one frame set with one template

 Invocation for each template required

25

Experimental Setup
Used MOCA to examine multiple GPU memory

mappings of the template matching kernels
Global memory only
Frame data in texture memory
Template data in texture memory

Benchmarking Platform
Ubuntu 9.04 64-bit
GeForce 8800 GTX w/ CUDA 2.3
Intel Core 2 Duo E8400 (3 GHz, 6 MB L2)
GCC 4.2.4

26

Global Memory Only
Compared original MATLAB,

optimized MATLAB and global
only GPU version

Optimized MATLAB
implemented similarly to GPU
Six steps like GPU kernels
Loops flattened
Reuses averages and

denominators

GPU implementations vary in
performance
Includes conversion from

double to single precision
End-to-end timing, including

data transfers

27

Global Memory Only
Patient 2 template and

frame ROI sizes are
smallest, results in best
memory read performance

Non-coalesced data reads
are the sticking point
Each thread works on a

different frame
Stride between frames is

large
Need to address: data

reorganization or
thread/grid mapping

28

Textured Frame Memory
There are many

redundant frame data
reads for any kernel
touching the frame
data
Moved frame data to

texture memory
Minor performance

differences
Locality not enough

for textures to provide
a benefit

29

Textured Template Memory
Numerator threads each read

the same template
Global memory not cached
Currently too large for shared

memory

Putting template data in
texture memory shows some
improvement
Enough locality for textures to

cache some reads

MOCA makes it easier to
explore implementations

30

Textured Template Memory

31

Conclusions

Global Memory Textured Frames Textured Templates
Best Speedup 85 92 133
Average Speedup 22 23 31

Memory placement is an important performance factor
Even with sub-optimal kernels
Important when applying a library of kernels to multiple

problems

MOCA aids prototyping and implementation space
exploration

32

Future Work
Template Matching

Add data reorganization for more coalesced memory
accesses
Another host-side operation that may be common

MOCA Improvements
Extend to support asynchronous operations
Increase automation of implementation space exploration
OpenCL back end

Other applications: eigen template algorithm or new
application

Focus on the optimal dimensions for parameterization
and representation within a library

34

Thank You

Nicholas Moore, Miriam Leeser
{nmoore,mel}@coe.neu.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

