Accelerating a MATLAB Application with Nvidia GPUs: a Case Study for GPU Library Construction

> Nicholas Moore, Miriam Leeser {nmoore,mel}@coe.neu.edu

> > 23 September 2009

Introduction

Exploring GPGPU Library Construction Issues

- Libraries faster than automatic tools
- Many differences to traditional CPU libraries
 - What are the important library parameters?
 - GPUs are accelerator boards

Outline

- CUDA implementation issues
- Support Infrastructure: Matlab OpenCL API (MOCA)
- Tumor tracking MATLAB application
- Implementation status and performance
- Observations and future directions

Mapping Functionality to CUDA

- Balancing several factors
 - Kernel complexity & limited register count
 - Mostly explicit memory placement options
 - Shared memory: can be as fast as registers, possible memory bank conflict issues
 - Texture and constant memory: read only and cached, texture memory optimized for 2D and 3D accesses
 - Global memory: slowest
 - CUDA blocks and threads hierarchy
 - Threads have access to shared data
 - Want enough threads to cover latencies
 - Need enough blocks to fill current & future GPUs
- Detailed knowledge of hardware is necessary to get best performance

Memory Selection Issue

- Different memory types
 - Performance varies
 - Limitations (size) vary
- Shared memory internal to block
- Global, constant, and texture memory can be used for kernel inputs
- What is the optimal selection for memory types?
 - Large search space
 - Each memory type has distinct usage in code

Image: NVIDIA CUDA Programming Guide 2.0 http://www.nvidia.com/object/cuda_develop.html

GPU Interfacing Issues

- Precision: GPU calculation generally in single precision floating point
 - Recent GPUs include support for double precision
 - 10x performance hit for Nvidia (less for ATI)
 - Likely many instances where single precision GPU is okay in a larger double precision application: prototyping, absolute speed, working with existing apps

Data type conversion needed

- Memory: CUDA requires CUDA-allocated host memory for asynchronous data transfers (also faster for large transfers)
 - Data copy may be introduced when the source memory type cannot be controlled

CPU/GPU Mapping Issues

- Want each algorithm step mapped to the right device (CPU or GPU) - affects:
 - Number/type of kernel invocations
 - Number and size of data transfers
 - Possibilities for concurrent execution
- Interplay of these issues can be complicated
 - Elimination of inefficient kernels
 - Extra data transfers for CPU computed values if base data still needed
 - Simultaneous CPU/GPU computation
 - Optimal mapping may put a given algorithm step on a suboptimal device

Matlab OpenCL API (MOCA)

- Large space for application mappings
 - Code management issues
 - Lots of similar code
 - Different code for different memory types
 - Managing host-side operations vs. GPU-kernel invocations
- MOCA aids implementation space exploration
 - Currently binds to CUDA, but aiming to be generic
 - Raises the level of abstraction for faster development
 - Data structures track multiple aspects of host and GPU resources
 - Functions wrap up numerous API calls into tasks
 - Front end catches some errors producing useful diagnostics
 - Isolates CUDA code for a given activity to one location
 - Focused on host code development

Lung Tumor Tracking

- Working with research by Ying Cui, Jennifer Dy, Gregory Sharp, Brian Alexander, and Steve Jiang
 - Represent Northeastern University, Massachusetts General Hospital, Harvard Medical School, and University of California San Diego

Some tumors move significantly during breathing

- Therapy targets large area with weak radiation prevents damage normal tissue
- Goal is to use higher-intensity focused radiation without implanted markers
- Two template-based tracking algorithms proposed:
 - Motion-enhanced templates and Pearson's correlation
 - Eigen templates and mean-squared error

Motion Enhancement

 Motion enhanced image is difference between the image and average of images used for templates

- Moving structures are emphasized
- Pearson's correlation is used to measure similarity between motion enhanced templates and frame ROIs

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers," Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.

Tumor Marking Tool

- Templates are generated with a MATLAB tool
- Would be created by clinician
 - Wide variation in template size based on tumor size and human factors

Multiple Templates

Image brightness & tumor position varies during breathing

Periodic: multiple representative templates from different points in the respiration cycle are used to compensate

Image: Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang, "Multiple Template Based Fluoroscopic Tracking of Lung Tumor Mass without Implanted Fiducial Markers," Physics in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.

Sliding Window Correlation

- Also allow template location variation for improved tracking
 - All template positions within the region of interest (ROI) are checked
- Each template is applied to all positions within the frame data ROIs for each frame
 - Static datasets of a large number of images
- Interested in accelerating development of algorithms

MATLAB M-Code Implementation

- Pearson's correlation is corr2 from the Image Processing Toolbox
- Four nested for loops generate all the necessary correlations
- Large number of correlations represent 82% of runtime
- Only other significant contributor: image file I/O and conversion: 4.6%

for i=1:numFrames for j=1:numTemplates for k = -lrShift:lrShift for m= -udShift:udShift curCorr = corr2(curT,curF); end end end end

Looping pseudocode without image indexing or similarity score keeping

corr2() Function (1) $\operatorname{corr2}(A,B) = \frac{\sum_{M} \sum_{N} (A_{MN} - \overline{A})(B_{MN} - \overline{B})}{\sqrt{(\sum_{M} \sum_{N} (A_{MN} - \overline{A})^{2})(\sum_{M} \sum_{N} (B_{MN} - \overline{B})^{2})}}$

- All corr2 calls run at once to exploit parallelism on GPU
- Large amount of computation redundancy
 - Matrix averages reused frequently
 - Denominator calculation used repeatedly
 - Relatively few templates applied to many frames

corr2() Function (2) $\operatorname{corr2}(A,B) = \frac{\sum_{M} \sum_{N} (A_{MN} - \overline{A})(B_{MN} - \overline{B})}{\sqrt{(\sum_{M} \sum_{N} (A_{MN} - \overline{A})^{2})(\sum_{M} \sum_{N} (B_{MN} - \overline{B})^{2})}}$

Possible to implement optimizations in MATLAB

- Not typically done by MATLAB users
- Optimized MATLAB parallel corr2() was created to determine correctness of GPU implementation
- Multiple kernels required
 - Hardware constraints
 - Take advantage of redundant computation

corr2() Function (3) $\operatorname{corr2}(A,B) = \frac{\sum_{M} \sum_{N} (A_{MN} - \overline{A})(B_{MN} - \overline{B})}{\sqrt{(\sum_{M} \sum_{N} (A_{MN} - \overline{A})^{2})(\sum_{M} \sum_{N} (B_{MN} - \overline{B})^{2})}}$

- Six separate kernels:
 - Separate average and denominator kernels for frame and template data
 - Numerator
 - Final multiplication
- Grid represents up/down and left/right shifts of templates within a frame's ROI; thread for each frame

corr2() Function (3) $\operatorname{corr2}(A,B) = \frac{\sum_{M} \sum_{N} (A_{MN} - \overline{A})(B_{MN} - \overline{B})}{\sqrt{(\sum_{M} \sum_{N} (A_{MN} - \overline{A})^{2})(\sum_{M} \sum_{N} (B_{MN} - \overline{B})^{2})}}$

- Six separate kernels:
 - Separate average and denominator kernels for frame and template data
 - Numerator
 - Final multiplication
- Grid represents up/down and left/right shifts of templates within a frame's ROI; thread for each frame

corr2() Function (3) $\operatorname{corr2}(A,B) = \frac{\sum_{M} \sum_{N} (A_{MN} - \overline{A})(B_{MN} - \overline{B})}{\sqrt{(\sum_{M} \sum_{N} (A_{MN} - \overline{A})^{2})(\sum_{M} \sum_{N} (B_{MN} - \overline{B})^{2})}}$

- Six separate kernels:
 - Separate average and denominator kernels for frame and template data
 - Numerator
 - Final multiplication
- Grid represents up/down and left/right shifts of templates within a frame's ROI; thread for each frame

- Six separate kernels:
 - Separate average and denominator kernels for frame and template data
 - Numerator
 - Final multiplication
- Grid represents up/down and left/right shifts of templates within a frame's ROI; thread for each frame

corr2() Function (3) $\operatorname{corr2}(A,B) = \frac{\sum_{M} \sum_{N} (A_{MN} - \bar{A})(B_{MN} - \bar{B})}{\sqrt{(\sum_{M} \sum_{N} (A_{MN} - \bar{A})^{2})(\sum_{M} \sum_{N} (B_{MN} - \bar{B})^{2})}}$

- Six separate kernels:
 - Separate average and denominator kernels for frame and template data
 - Numerator
 - Final multiplication
- Grid represents up/down and left/right shifts of templates within a frame's ROI; thread for each frame

corr2() Function (3)

$$\operatorname{corr2}(A,B) = \frac{\sum_{M} \sum_{N} (A_{MN} - \overline{A})(B_{MN} - \overline{B})}{\sqrt{(\sum_{M} \sum_{N} (A_{MN} - \overline{A})^{2})(\sum_{M} \sum_{N} (B_{MN} - \overline{B})^{2})}}$$

- Six separate kernels:
 - Separate average and denominator kernels for frame and template data

Numerator

- Final multiplication
- Grid represents up/down and left/right shifts of templates within a frame's ROI; thread for each frame

corr2() Function (3) $\sum_{M} \sum_{N} (A_{MN} - \overline{A})(B_{MN} - \overline{B})$ $\operatorname{corr2}(A, B) = \sqrt{(\sum_{M} \sum_{N} (A_{MN} - \overline{A})^{2})(\sum_{M} \sum_{N} (B_{MN} - \overline{B})^{2})}$

- Six separate kernels:
 - Separate average and denominator kernels for frame and template data
 - Numerator
 - Final multiplication
- Grid represents up/down and left/right shifts of templates within a frame's ROI; thread for each frame

Reference Dataset

Patient	Frames	Templates	Template Dimensions	Shift V/H	corr2() Calls
1	442	12	53x54	18/9	3532464
2	348	13	23x21	11/5	1144572
3	259	10	76x45	9/4	442890
4	290	11	116x175	9/3	424270
5	293	12	78x109	11/6	979524
6	210	14	107x159	9/2	279300

 Reference data set includes six patients with manually specified tumor location for each frame

• All the parameters vary

Existing application parameters not based on powers of two

CUDA corr2() Implementation

- Frames/templates mapped to threads in a block
 - Frames: not multiple of 64, but within appropriate range
 - Templates: not efficient
- Template locations in the frame data ROI are mapped to block grid
 - 95 to 703 blocks for frame kernels
 - 1 block for template kernels: not efficient
- Numerator and Final Multiplication combine frame and template statistics
 - 4-dimensional data
 - Kernels combines one frame set with one template
 - Invocation for each template required

Experimental Setup

- Used MOCA to examine multiple GPU memory mappings of the template matching kernels
 - Global memory only
 - Frame data in texture memory
 - Template data in texture memory
- Benchmarking Platform
 - Ubuntu 9.04 64-bit
 - GeForce 8800 GTX w/ CUDA 2.3
 - Intel Core 2 Duo E8400 (3 GHz, 6 MB L2)
 - GCC 4.2.4

Global Memory Only

- Compared original MATLAB, optimized MATLAB and global only GPU version
- Optimized MATLAB implemented similarly to GPU
 - Six steps like GPU kernels
 - Loops flattened
 - Reuses averages and denominators
- GPU implementations vary in performance
 - Includes conversion from double to single precision
 - End-to-end timing, including data transfers

Runtime of Various Implementations

Global Memory Only

- Patient 2 template and frame ROI sizes are smallest, results in best memory read performance
- Non-coalesced data reads are the sticking point
 - Each thread works on a different frame
 - Stride between frames is large
 - Need to address: data reorganization or thread/grid mapping

Textured Frame Memory

- There are many redundant frame data reads for any kernel touching the frame data
 - Moved frame data to texture memory
 - Minor performance differences
 - Locality not enough for textures to provide a benefit

Runtimes of Frame Data GPU Kernels

Textured Template Memory

- Numerator threads each read the same template
 - Global memory not cached
 - Currently too large for shared memory
- Putting template data in texture memory shows some improvement
 - Enough locality for textures to cache some reads
- MOCA makes it easier to explore implementations

Runtimes of Numerator GPU Kernels

Textured Template Memory

Conclusions

	Global Memory	Textured Frames	Textured Templates
Best Speedup	85	92	133
Average Speedup	22	23	31

Memory placement is an important performance factor

- Even with sub-optimal kernels
- Important when applying a library of kernels to multiple problems
- MOCA aids prototyping and implementation space exploration

Future Work

- Template Matching
 - Add data reorganization for more coalesced memory accesses
 - Another host-side operation that may be common
- MOCA Improvements
 - Extend to support asynchronous operations
 - Increase automation of implementation space exploration
 - OpenCL back end
- Other applications: eigen template algorithm or new application
- Focus on the optimal dimensions for parameterization and representation within a library

Thank You

Nicholas Moore, Miriam Leeser {nmoore,mel}@coe.neu.edu

