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This abstract covers a case study in using the Nvidia CUDA 
environment to accelerate lung tumor tracking through 
template matching, and will discuss how this lays the 
groundwork for creating high performance GPU accelerated 
applications through a modular library-based programming 
interface. The tracking algorithm uses motion-enhanced 
templates and Pearson's correlation. Issues that arise when 
using CUDA from within MATLAB are investigated, as 
well as how the particular application was mapped from 
MATLAB code to a GPU. The case study is being used to 
develop a tool that allows more rapid exploration of the 
tradespaces for GPU applications. 

The goal is to develop techniques that support abstracting 
user code from the architecture specific code and to provide 
portability along with high performance. 

Template Matching Application 
Radiotherapy for lung tumors is commonly handled by the 
administration of radiation over a large area since lung 
tumors can move significantly during normal breathing. 
This radiates normal tissue as well, necessitating the use of 
a low-intensity beam. Y. Cui, et al.1 are researching ways to 
improve lung tumor radiotherapy through the use of 
focused higher-intensity radiation that tracks the tumor. The 
tumor tracking algorithm considered in this case study 
generates motion-enhanced templates and uses Pearson's 
correlation for its similarity function. The original 
templates, generated by a clinician using a tool developed 
with MATLAB to mark the tumor location at various 
representative locations through the patient's respiration 
cycle, are converted to motion-enhanced templates by 
subtracting a given template from the average of all the 
templates, thus emphasizing moving portions of the image. 

 
Figure 1: Pearon's Correlation 

To handle further variation in respiration, the Pearson's 
correlation similarity function, shown in Figure 1, is applied 
to multiple locations, forming a region of interest (ROI), as 
shown in Figure 2. The similarity function is computed for 
each ROI location for each template and for each image to 
determine the likeliest location of the tumor. 

The result of computing so many individual similarity 
scores is a significant amount of processing. For the six 
patient data sets used for algorithm development, the 
algorithm requires from about 279,000 to about 3.73 
million correlations, taking from about 77 seconds to 592 
seconds to execute (on an Intel Core 2 Duo E8400) and a 

relatively constant 82% of the total application runtime 
across all six patients. 

The significant time spent processing images makes this 
application a good match for GPU architectures. To get 
maximum parallelism out of the GPU, all of the Pearson's 
correlation similarity functions, implemented by the corr2() 
function in MATLAB, are executed together in parallel. 

 
Figure 2: Multiple 2D Correlations 

Working with CUDA 
The current Nvidia GPU architecture offers a lot of 
potential processing power, but requires developers to 
structure their application around it. The CUDA 
environment provides programmers with more complete 
control over the placement of data in memory than is 
common with CPU architectures. The various types of 
memory, each with different performance characteristics 
and sizes, are characterized for the GPUs considered in this 
case study in Table 1. Processing elements are grouped into 
multiprocessors that share cached read-only constant and 
texture memories and read/write shared memories.  The 
register pool is also allocated at the multiprocessor level. 
Device memory is the largest and has the fewest 
restrictions, but can be much slower than constant and 
texture memory. Shared memory allows subsets of the 
individual GPU processing elements to communicate 
relatively efficiently during kernel execution. A given GPU 
kernel's output must always be placed in device memory. 

In addition to performance characteristics, the host-based 
control code to set up a given kernel's inputs also varies 
between memory types. Texture memories require the 
setting of a number of parameters, and binding data to 
texture or constant memory may require a data copy 
between locations within a GPU's device memory. 

GPUs are also different from CPUs in that individual 
processing elements are less capable than a general purpose 
CPU core. With the GPUs considered in this case study, 
compute-bound kernels generally want to use ten or fewer 
registers (for architectural reasons not obvious from Table 



1). Spilling out of the registers allocated to an individual 
processing unit is often prohibitive. However, the register 
count may be increased by careful utilization of shared 
memory as extra register space. 

Type Size Scope R/W Speed 

Registers 32 KB Thread RW Fast 

Shared 16 KB Multiprocessor RW Fast 

Device 1.5 GB Global RW Slow 

Constant 8 KB 
cached Global R Fast when cached

Texture 6-8 KB 
cached Global R Fast when cached

Table 1: Nvidia GPU Architecture Memories per 
Multiprocessor 

In response to these constraints, the parallel corr2() 
function considered here, for which example parameter 
sizes are presented in Table 2, was broken into six steps: 
ROI and template averages, ROI and template standard 
deviations, the numerator, and final multiplication. 

Template Dimensions 21x23 pixels 

Vertical Shift ±11 pixels 

Horizontal Shift ±5 pixels 

Templates 13 

Frames 348 

corr2() Operations 1 144 572 
Table 2: Parameter Information for a Particular Patient 

This allows the implementation to take advantage of the 
large amount of computational redundancy across the set of 
corr2() executions for a given patient: both the matrix 
averages and the sums of the squares of the deviations from 
the matrix means are computed once and reused. 

To explore the performance trade-offs associated with each 
type of memory, different memory locations for the kernel 
inputs have been implemented. Different GPU kernels are 
required for each combination of memory locations for 
inputs, as the GPU code for accessing each is slightly 
different. As an example of a trade-off, it is not known 
whether the caching provided by texture memories will 
provide enough of a performance benefit for a given step to 
outweigh the extra setup required over global memory. 

Decisions about how to map an application to CUDA must 
take these and many other considerations into account, 
resulting in a large tradespace. 

MATLAB Interfacing 
With this application, consideration was given to 
interfacing with MATLAB, which was performed through a 
MEX file. This involves both data type conversion and 
memory allocation issues. Only more recent Nvidia GPUs 
support double precision arithmetic, and those that do suffer 
about an order of magnitude hit in performance relative to 
single precision arithmetic. As a result, it is still desirable to 
execute GPU computations in single precision. Since 
MATLAB's default is double precision, it is necessary to 

convert the data, adding overhead to the application. 

In addition to conversion issues, the CUDA environment 
recognizes multiple types of host memory with different 
host-to-device data transfer characteristics. A data copy 
from MATLAB allocated memory to optimal CUDA 
allocated host memory can be absorbed into the data 
conversion process. The data transfer choices also add to 
the size of the tradespace. 

Since the input data will already be streaming through the 
CPU for conversion, executing some of the application 
steps with the CPU instead of the GPU is being examined. 
This can reduce the number of kernel launches, especially 
for inefficient kernels, amortizing conversion overhead. For 
example, the template average calculation is over a small 
number of templates and doesn't result in enough 
parallelism to fully utilize a GPU.  Another option is to 
force the entire MATLAB/GPU computation to take place 
in single precision, which may combine with the other 
execution options resulting in trade-offs related to 
performance, memory type usage, and computational 
accuracy. 

Conclusions & Future Work 
A good understanding of a GPU's memory hierarchy is 
important since memory hierarchy is manually managed 
and essential to achieving high performance on GPUs. The 
case study presented here, which will be completed with 
results by the time of the HPEC Workshop, is being used to 
build a tool that enables quicker exploration of the 
implementation tradespace by expediting the creation of 
various instances. It is the first step towards a library-based 
programming interface for GPUs. Knowledge of the 
hierarchy not only allows efficient implementation of GPU 
kernels, but also sheds light onto what aspects of the 
kernels will need to be characterized and parameterized for 
a GPU library to effectively map application descriptions 
onto the execution hardware. 

Future work includes examining alternate mappings of the 
corr2() function's mathematics to GPU kernels. In addition 
to the particular setup used for this case study, the trade-offs 
will also be examined on various CUDA-enabled GPUs as 
well as double precision capable GPUs. Studying other 
vendors' products, such as AMD/ATI, and other 
environments, like OpenCL, will be examined. 
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