
Accelerating a MATLAB Application with Nvidia GPUs: a Case Study for
GPU Library Construction

Nicholas Moore and Miriam Leeser
{nmoore, mel}@coe.neu.edu

Dept. of Electrical and Computer Engineering
Northeastern University, Boston, MA

This abstract covers a case study in using the Nvidia CUDA
environment to accelerate lung tumor tracking through
template matching, and will discuss how this lays the
groundwork for creating high performance GPU accelerated
applications through a modular library-based programming
interface. The tracking algorithm uses motion-enhanced
templates and Pearson's correlation. Issues that arise when
using CUDA from within MATLAB are investigated, as
well as how the particular application was mapped from
MATLAB code to a GPU. The case study is being used to
develop a tool that allows more rapid exploration of the
tradespaces for GPU applications.

The goal is to develop techniques that support abstracting
user code from the architecture specific code and to provide
portability along with high performance.

Template Matching Application
Radiotherapy for lung tumors is commonly handled by the
administration of radiation over a large area since lung
tumors can move significantly during normal breathing.
This radiates normal tissue as well, necessitating the use of
a low-intensity beam. Y. Cui, et al.1 are researching ways to
improve lung tumor radiotherapy through the use of
focused higher-intensity radiation that tracks the tumor. The
tumor tracking algorithm considered in this case study
generates motion-enhanced templates and uses Pearson's
correlation for its similarity function. The original
templates, generated by a clinician using a tool developed
with MATLAB to mark the tumor location at various
representative locations through the patient's respiration
cycle, are converted to motion-enhanced templates by
subtracting a given template from the average of all the
templates, thus emphasizing moving portions of the image.

Figure 1: Pearon's Correlation

To handle further variation in respiration, the Pearson's
correlation similarity function, shown in Figure 1, is applied
to multiple locations, forming a region of interest (ROI), as
shown in Figure 2. The similarity function is computed for
each ROI location for each template and for each image to
determine the likeliest location of the tumor.

The result of computing so many individual similarity
scores is a significant amount of processing. For the six
patient data sets used for algorithm development, the
algorithm requires from about 279,000 to about 3.73
million correlations, taking from about 77 seconds to 592
seconds to execute (on an Intel Core 2 Duo E8400) and a

relatively constant 82% of the total application runtime
across all six patients.

The significant time spent processing images makes this
application a good match for GPU architectures. To get
maximum parallelism out of the GPU, all of the Pearson's
correlation similarity functions, implemented by the corr2()
function in MATLAB, are executed together in parallel.

Figure 2: Multiple 2D Correlations

Working with CUDA
The current Nvidia GPU architecture offers a lot of
potential processing power, but requires developers to
structure their application around it. The CUDA
environment provides programmers with more complete
control over the placement of data in memory than is
common with CPU architectures. The various types of
memory, each with different performance characteristics
and sizes, are characterized for the GPUs considered in this
case study in Table 1. Processing elements are grouped into
multiprocessors that share cached read-only constant and
texture memories and read/write shared memories. The
register pool is also allocated at the multiprocessor level.
Device memory is the largest and has the fewest
restrictions, but can be much slower than constant and
texture memory. Shared memory allows subsets of the
individual GPU processing elements to communicate
relatively efficiently during kernel execution. A given GPU
kernel's output must always be placed in device memory.

In addition to performance characteristics, the host-based
control code to set up a given kernel's inputs also varies
between memory types. Texture memories require the
setting of a number of parameters, and binding data to
texture or constant memory may require a data copy
between locations within a GPU's device memory.

GPUs are also different from CPUs in that individual
processing elements are less capable than a general purpose
CPU core. With the GPUs considered in this case study,
compute-bound kernels generally want to use ten or fewer
registers (for architectural reasons not obvious from Table

1). Spilling out of the registers allocated to an individual
processing unit is often prohibitive. However, the register
count may be increased by careful utilization of shared
memory as extra register space.

Type Size Scope R/W Speed

Registers 32 KB Thread RW Fast

Shared 16 KB Multiprocessor RW Fast

Device 1.5 GB Global RW Slow

Constant 8 KB
cached Global R Fast when cached

Texture 6-8 KB
cached Global R Fast when cached

Table 1: Nvidia GPU Architecture Memories per
Multiprocessor

In response to these constraints, the parallel corr2()
function considered here, for which example parameter
sizes are presented in Table 2, was broken into six steps:
ROI and template averages, ROI and template standard
deviations, the numerator, and final multiplication.

Template Dimensions 21x23 pixels

Vertical Shift ±11 pixels

Horizontal Shift ±5 pixels

Templates 13

Frames 348

corr2() Operations 1 144 572
Table 2: Parameter Information for a Particular Patient

This allows the implementation to take advantage of the
large amount of computational redundancy across the set of
corr2() executions for a given patient: both the matrix
averages and the sums of the squares of the deviations from
the matrix means are computed once and reused.

To explore the performance trade-offs associated with each
type of memory, different memory locations for the kernel
inputs have been implemented. Different GPU kernels are
required for each combination of memory locations for
inputs, as the GPU code for accessing each is slightly
different. As an example of a trade-off, it is not known
whether the caching provided by texture memories will
provide enough of a performance benefit for a given step to
outweigh the extra setup required over global memory.

Decisions about how to map an application to CUDA must
take these and many other considerations into account,
resulting in a large tradespace.

MATLAB Interfacing
With this application, consideration was given to
interfacing with MATLAB, which was performed through a
MEX file. This involves both data type conversion and
memory allocation issues. Only more recent Nvidia GPUs
support double precision arithmetic, and those that do suffer
about an order of magnitude hit in performance relative to
single precision arithmetic. As a result, it is still desirable to
execute GPU computations in single precision. Since
MATLAB's default is double precision, it is necessary to

convert the data, adding overhead to the application.

In addition to conversion issues, the CUDA environment
recognizes multiple types of host memory with different
host-to-device data transfer characteristics. A data copy
from MATLAB allocated memory to optimal CUDA
allocated host memory can be absorbed into the data
conversion process. The data transfer choices also add to
the size of the tradespace.

Since the input data will already be streaming through the
CPU for conversion, executing some of the application
steps with the CPU instead of the GPU is being examined.
This can reduce the number of kernel launches, especially
for inefficient kernels, amortizing conversion overhead. For
example, the template average calculation is over a small
number of templates and doesn't result in enough
parallelism to fully utilize a GPU. Another option is to
force the entire MATLAB/GPU computation to take place
in single precision, which may combine with the other
execution options resulting in trade-offs related to
performance, memory type usage, and computational
accuracy.

Conclusions & Future Work
A good understanding of a GPU's memory hierarchy is
important since memory hierarchy is manually managed
and essential to achieving high performance on GPUs. The
case study presented here, which will be completed with
results by the time of the HPEC Workshop, is being used to
build a tool that enables quicker exploration of the
implementation tradespace by expediting the creation of
various instances. It is the first step towards a library-based
programming interface for GPUs. Knowledge of the
hierarchy not only allows efficient implementation of GPU
kernels, but also sheds light onto what aspects of the
kernels will need to be characterized and parameterized for
a GPU library to effectively map application descriptions
onto the execution hardware.

Future work includes examining alternate mappings of the
corr2() function's mathematics to GPU kernels. In addition
to the particular setup used for this case study, the trade-offs
will also be examined on various CUDA-enabled GPUs as
well as double precision capable GPUs. Studying other
vendors' products, such as AMD/ATI, and other
environments, like OpenCL, will be examined.

Acknowledgements
This research was supported, in part, by the The
MathWorks.

References
 [1] Y. Cui, J. G. Dy, G. C. Sharp, B. Alexander, and S. B. Jiang,

"Multiple Template Based Fluoroscopic Tracking of Lung
Tumor Mass without Implanted Fiducial Markers," Physics
in Medicine and Biology, Vol. 52, pp. 6229-6242, 2007.

