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Introduction
In this abstract we present a GPU-based implementa-
tion of a powerful class of error correcting codes known
as low-density parity-check (LDPC) codes. LDPC
codes can be used to achieve near-capacity performance
in noisy channels. Unfortunately, this high performance
comes with very high computational complexity. For
a particular multiple input multiple output (MIMO)
wireless communication system targeting a 1 GB/s data
rate, a real time implementation would require cus-
tom hardware (ASIC or FPGA), while our optimized
MATLAB-based version can take over nine days to de-
code a half second of recorded data. The real time solu-
tion is of course desireable, but it would take significant
development to get such a device ready. Furthermore
with a hardware-based decoder it is difficult to change
the particular code and even more difficult to modify it
to an alternate application with different parameters.

Using an algorithm ported to a single NVIDIA GTX
280 GPU, the decoding time is reduced from 9 days
to 22 minutes and 32 seconds (a 582x speedup). This
can be further reduced to 5 minutes and 37 seconds
(a 2336x speedup) by breaking up the data across 4
GPU system containing two NVIDIA GTX 295 cards.
The implementation is general and can be called from
within MATLAB via a MEX function.

Algorithm Description
LDPC codes are block codes defined by a sparse parity-
check matrix H which essentially represents a sparse bi-
partite graph connecting check and symbol nodes [1,2].
Binary LDPC codes were first shown to achieve remark-
able performance [1]. It was later discovered [3] that
coding performance could be enhanced by using LDPC
codes defined over the Galois field GF (q). An LDPC
code over GF (2m) groups every m bits into elements of
this field. As m increases, the performance of GF (2m)
codes improves; however, this improvement comes at
the expense of higher decoding complexity.

The LDPC decoder [4] is a belief propagation algo-
rithm that iteratively estimates the posteriori proba-
bilities {P (cj = k|rj)}, where cj is the jth transmitted
GF(q) symbol, k is an element of GF(q), and zj is the
receiver observation. Given a set of prior probabilities
{P (cj = k)} on the symbols, each iteration computes
probability vectors Rij and Qij , defined below for all
checks {i} and symbols {j}. The length of Rij or Qij
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is equal to the finite field size. Each decoding iteration
of this message-passing algorithm involves two stages.
The basic structure of the LDPC decoder is depicted
in Figure 1.

Figure 1: LDPC decoder basic structure

During the first stage, also known as the symbol update,
the following probabilities are computed:

Qij = [P (cj = 0|{zi}i∈M(j)−i), · · ·
, P (cj = q − 1|{zi}i∈M(j)−i)] , (1)

where M(j) denotes the set of check nodes connected
to symbol j. The processing required to compute Qij

is depicted in Figure 2.

Figure 2: Symbol update stage of LDPC decoder.
Computed for each symbol j and its connected
checks i1 . . . im.

The second stage, called the check update, computes
the following probabilities:

Rij = [P (zj = 0|cj = 0, {cn}n∈N(i)−j), · · · ,

P (zj = 0|cj = q − 1, {cn}i∈N(i)−j)] , (2)

where N(i) denotes the set of symbol nodes connected
to check i and zj denotes the value of the jth syndrome.
The processing required to compute Rij is depicted in
Figure 3.

After the check update, the probability vectors Rij and
the prior probabilities are used to compute the poste-
riori probabilities as given in Figure 4. The posteriori
probabilities are used to make a hard decision on the
transmitted codeword. This hard decision candidate
codeword is then multiplied by the parity matrix to de-
termine the syndromes; if the syndromes are all zero,
then decoding halts. Otherwise, decoding continues it-
erating between symbol and check updates until the
syndromes are all zero.



Figure 3: Check update stage of LDPC decoder. Computed for each check i and its connected symbols
j1 . . . jn.

Figure 4: Computations of posteriori probabilities.
Computed for each symbol j and its connected
checks i1 . . . im.

Parallelization
NVIDIA’s CUDA programming language extends the C
programming language to provide a convenient way to
launch and schedule processing jobs from a single host
CPU call known as a kernel. Each kernel consists of
a grid that distributes the processing across the avail-
able multiprocessors and a thread block that coordi-
nates the processing within each multiprocessor. Each
thread block is run until completion, at which time the
next thread block in the grid is executed. When the list
of elements in the grid is exhausted the kernel returns
to the host CPU [5]. On the GPU, threads can coordi-
nate their effort with the other threads in a block but
are unable to coordinate with threads in other blocks.
Algorithms ported to the GPU, must similarly be de-
composed into blocks that are independent of all the
other blocks.

The most computationally intensive portion of the algo-
rithm is the check update depicted in Figure 3. Because
the computation for each check is independent of the
computation for all other checks, we assign each check
i to a separate block. Within a block the threads are
assigned to one of the q possible values the symbol cj

can take. To setup for each of the permutations and the
Walsh transforms, the probabilities are loaded into the
multiprocessor’s fast shared memory. Through shared
memory, each thread can access each of the probabili-
ties held by the other threads. The permutations pro-
ceed by each thread reading the probability it needs
from shared memory. The Walsh transform proceeds
through a simple multi-threaded radix-4 algorithm.

Because some of the computation is duplicated, we
combine the symbol update, the computations of pos-
teriori probabilities, and the hard decision. With this

step, each symbol j is mapped to a particular block
and every thread is assigned to one of the q possible
values the symbol cj can take. Here shared memory is
used to normalize the probability of each symbol and
to compute the index corresponding to the most likely
value of cj .

Results
The GF (q) parity check matrix H used for benchmark-
ing the algorithm is of size 4000x6000 and contains
12000 nonzero elements. The benchmark runs for 15
iterations before a valid codeword is determined. The
time taken to compute a single codeword is 33.8 ms
which corresponds to a 582X speedup versus the 19.68s
MATLAB takes. The multi-GPU setup can decode 4
frames in 33.7 ms. The decoding of a single codeword
takes 922 MFLOPS. The GPU implementation achieves
26.3 GFLOPS a second out of a possible 930 GFLOPS
a second the GTX 280 is capable of during the decode
process. The check update takes 78% of the computa-
tion time and achieves a throughput of 36.2 GFLOPS
per second. The overall performance of the algorithm
is limited by both memory accesses and integer oper-
ations that often take longer to compute than floating
point operations.

The single GPU results were from a single NVIDIA
GTX 280 on a system containing a 3.00GHz Intel
Core 2 X9650 with 8GB of 800MHz DDR2 memory.
The multi-GPU performance results used two NVIDIA
GTX 295s on a system containing a 3.20GHz Intel Core
i7 965 with 12GB of 1330MHz DDR3 memory.
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