

Hierarchical Parallelization of a Radio Frequency
Tomography Application via Multiple GPUs

Dana Schaa¹, Mark Barnell², Roope Astala3, Steve Reinhardt3, and Viral Shah3
¹Northeastern University ²Air Force Research Lab, Rome, NY 3Interactive Supercomputing

dschaa@ece.neu.edu mark.barnell@rl.af.mil {rastala, sreinhardt, vshah}@interactivesupercomputing.com

Abstract*
Faced with the excruciating pressure of the drastic
performance needs of embedded applications on one side,
the difficulty of programming heterogeneous multicore
cluster architectures on another, and rapid-development
requirements on a third, embedded application developers
are reconsidering the conventional wisdom that productivity
languages such as M and Python are only for prototyping
and not for deployment. Prior work has shown the
scalability of M programs to 128-512 cores via the Star-P
parallel platform and the feasibility of acceleration of M
programs by hardware accelerators. In this work on a radio
frequency tomography application, we show that O(32)
GPUs can be used effectively on a single problem, and that
the absolute performance of the CPU-GPU linkage is
sufficiently fast not only for weak scaling, but also for
strong scaling within limits, delivering near-real-time
performance.

Background
Numerous attempts at M language parallelism have been
made [Choy05], of which the most widely used current
implementations include pMATLAB [Mullen], the Parallel
Computing Toolbox™ [Sharma], and Star-P™ [ISC]. Each
of these tools seeks to enable use of parallelism with
modest changes to the serial code.

The Radar Signal Processing Technology Branch of the Air
Force Research Lab (AFRL) develops radar frequency (RF)
tomography algorithms [Wicks]. They are typically written
in the M language of MATLAB† for rapid algorithmic
development, and also have demanding performance
requirements that cannot be met without parallelism
[Elton08]. Exploiting parallelism while preserving
algorithmic flexibility has high value to the larger project.

Prior work [Elton09] has explored the parallelization of
these algorithms with Star-P on general-purpose (i.e., x86-
64) processors, including the practical issues involved in
running at large shared HPC centers, such as security and
scheduling, and [Murphy] the use of hardware accelerators
with M programs.

Aims
This work explores another dimension of performance for
these algorithms, namely the use of general-purpose graphic

† MATLAB® is a registered trademark of The MathWorks, Inc. Other
product or brand names are trademarks or registered trademarks of their
respective holders. ISC's products are not sponsored or endorsed by The
Mathworks, Inc. or by any other trademark owner referred to in this
document.

processing units (GPGPUs) for the bulk of the
computational work, instead of general-purpose CPUs.
Given the data size and computational intensity of typical
RF tomography data, many GPUs must be used to meet the
absolute performance demands, leading to the need to
balance the parallelism within a chip with the parallelism
across many chips. Multiple GPUs can accelerate the
performance of a fixed data size (i.e., strong scaling) or can
cope with larger data sizes by scaling the number of GPUs
proportionally with the data size (i.e., weak scaling).

Methods
The algorithm exhibits parallelism among different pulses
of radio waveforms and among pixels in each image. The
algorithm is viewed as an M program, but the kernel that
consumes more than 99% of the time was already coded in
C for higher speed. The first task was to extend the C code
to the CUDA interface [Lindholm], simultaneously
refactoring the processing between the C/CUDA code and
M code so that the C/CUDA code would work correctly on
a subset of the pulses in the data. CUDA 2.0 (Bale) and 2.2
(Lincoln) and Star-P version 2.8 (both) were used for the
tests, with the Star-P client installed collocated with the
server. The Mex data-exchange interface was used to pass
data between the M and C/CUDA functions executed via
the Star-P Task Parallel Engine. The ppeval task-parallel
construct in Star-P was used to call multiple instances of the
C/CUDA kernel (each working on its own data)
simultaneously. Numerical differences did exist between
double-precision execution in CPUs and single-precision
execution in GPUs, but the differences were not visible in
the resulting images. The initial data size was 180 pulses,
which we used for our strong scaling work and as the per-
node size for weak scaling.

The first system used was the Bale cluster at the Ohio
Supercomputer Center, the GPU-accelerated portion of
which consisted of 8 nodes, each with two AMD Opteron
DualCore sockets (2.6Ghz) and two NVIDIA Quadro FX
5600 GPUs, each with 128 cores running at 600MHz . The
second cluster used was the Lincoln cluster at the National
Center for Supercomputing Applications, which consisted
of 192 computer nodes, each a Dell PowerEdge 1950 dual-
socket node with quad-core Intel Xeon E5410
(“Harpertown”) sockets (2.33GHz). Pairs of these nodes
shared access to a NVIDIA Tesla S1070 accelerator, each
containing 4 Tesla GPUs, each with 240 cores running at
1.44GHz. All the GPUs used were capable only of single-
precision floating-point arithmetic.

0.1

1

10

100

1 2 4 8 16 32

#GPUs

tim
e

(s
ec

on
ds

)

1 X data (Bale)
1 X data
2 X data
4 X data
16 X data
64 x data
perfect

Performance Results
The original serial algorithm processes 180 pulses in 45.2
seconds on a single (x86-64) core of Bale.‡ With the
CUDA kernel, it executes in 1.07s on 2 GPUs on a single
node of Bale or 1.00s on 1 GPU of Lincoln, 42.2 and 45.2
times faster, respectively, than a single x86-64 core. We
quickly discovered that, on Lincoln, using a second GPU on
a node ran almost 2X slower, which we attributed to
bandwidth-sharing on the PCI-Express 8x link (contrasted
with PCI-Express 16x links on Bale); thus our Lincoln
results used only a single GPU per node, while the Bale
results used 2 GPUs per node.

The first dimension we explored was weak scaling, using
the basic unit of 180 pulses per node. As expected (see
Figure 2), on Bale each added node is as efficient as the

first, enabling solution of an 8X larger problem in close to
the same time. On Lincoln, the results degraded somewhat
up to 32 GPUs and then markedly at 48 GPUs, for reasons
we do not fully understand. With the 32-GPU case, this
application effectively uses about 8,000 (32*240) cores.

With success at demonstrating weak scaling across a

modest number of GPUs, we turned our attention to a more
demanding problem, that of reducing the run-time of a
given problem size as far as practical by adding more
GPUs, also known as strong scaling. While this is clearly
desirable in the interests of absolute performance, there are
minimum amounts of work per chip or per core that we
approach, given that each GPU has hundreds of cores in it,
and the basic data size we used (180 pulses) runs for only

‡ Or 22 seconds on one core of an Intel® Xeon® 5450 socket(3.0GHz).

45 seconds on a single CPU core. Figure 2 shows a family
of speed-up curves for different data sizes, with the slope of
the Perfect line for comparison§. On Lincoln, scaling is
good until each GPU is executing only 180 pulses, which
we did not try to subdivide further among GPUs. On Bale,
we subdivided even 180 pulses among multiple GPUs,
showing that a factor of two reduction in absolute time is
possible even if efficiency (on 8 GPUs, 4 times more GPUs
to get 2 times more performance) is not ideal.

Summary
This work extends the use of the M productivity language
deeply into parallelism, with one level of parallelism
exploited within a GPU (via CUDA) and a second level of
parallelism exploited between GPUs (via Star-P). Weak
scaling performs very well within the tested range (modulo
the anomalies on Lincoln). Strong scaling performs well
down to the granularity of the basic data size, and bears
more investigation of subdividing further to achieve
absolute times below one second.

Acknowledgments
The authors acknowledge the gracious help of OSC and
NCSA personnel in their use of the systems described, and
Niraj Srivastava’s help with the systems at AFRL/Rome.

References
[Choy04] R. Choy, A. Edelman, J.R. Gilbert, V. Shah, and D.

Cheng, Star-P: High Productivity Parallel Computing, High
Performance Embedded Computing Workshop, 2004.

[Elton08] B.H. Elton and K.M. Magde, A Scalability Study on
Multicore Cluster Systems of an AFRL Radar Frequency
Tomography Imaging Code Written in MATLAB® for
Parallel Execution Using Star-P®, Proceedings of the DoD
HPC Modernization User Group Conference, IEEE 2008.

[Elton09] B.H. Elton, S. Samsi, H.B. Smith, L. Humphrey, B.
Guilfoos, S. Ahalt, A. Chalker, K.M. Magde, N.K.
Srivastava, A.H. Abdullah, and P. Boyle, Practical High
Performance Computing: A Case Study, SC09, 2009.

[ISC] Interactive Supercomputing, Inc., Star-P® Programming
Guide for Use with MATLAB® (Release 2.8), 2009.

[Lindholm] Lindholm, E., Nickolls, J., Oberman, S., and
Montrym, J., NVIDIA Tesla: A Unified Graphics and
Computing Architecture, IEEE Micro 28(2) pp. 39-55, 2008.

 [Mullen] J. Mullen, N. Bliss, R. Bond, J. Kepner, H. Kim, and A.
Reuther, High-Productivity Software Development with
pMatlab, Computing in Science and Engineering 11(1), 2009.

[Murphy] M. Murphy, M. Raymond, and S. Reinhardt, Automatic
Mapping of MATLAB Code to Parallel FPGAs on the SGI
Altix, HPEC Workshop, 2005.

 [Sharma] G. Sharma and J. Martin, MATLAB®: A Language for
Parallel Computing, International Journal of Parallel
Programming 37(1), 2009.

[Wicks] M.C. Wicks, B. Himed, J.L.E. Bracken, H. Bascom, and
J. Clancey, Ultra narrow band adaptive tomographic radar,
2005 1st IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing. IEEE, 2005.

§ Note that the time to store the resulting image was not counted in the
strong scaling case, as the systems were not configured for high I/O
bandwidth, unlike systems actually deployed for this application.

Weak Scaling of 180-pulse Processing

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

1 2 4 8 16 32 48

#GPUs

tim
e

(s
ec

on
ds

)

Bale Lincoln

Figure 1. Weak Scaling on Bale and Lincoln

Figure 2. Strong Scaling on Bale and Lincoln

