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Abstract* 
Faced with the excruciating pressure of the drastic 
performance needs of embedded applications on one side, 
the difficulty of programming heterogeneous multicore 
cluster architectures on another, and rapid-development 
requirements on a third, embedded application developers 
are reconsidering the conventional wisdom that productivity 
languages such as M and Python are only for prototyping 
and not for deployment.  Prior work has shown the 
scalability of M programs to 128-512 cores via the Star-P 
parallel platform and the feasibility of acceleration of M 
programs by hardware accelerators.  In this work on a radio 
frequency tomography application, we show that O(32) 
GPUs can be used effectively on a single problem, and that 
the absolute performance of the CPU-GPU linkage is 
sufficiently fast not only for weak scaling, but also for 
strong scaling within limits, delivering near-real-time 
performance. 

Background 
Numerous attempts at M language parallelism have been 
made [Choy05], of which the most widely used current 
implementations include pMATLAB [Mullen], the Parallel 
Computing Toolbox™ [Sharma], and Star-P™ [ISC].  Each 
of these tools seeks to enable use of parallelism with 
modest changes to the serial code. 

The Radar Signal Processing Technology Branch of the Air 
Force Research Lab (AFRL) develops radar frequency (RF) 
tomography algorithms [Wicks].  They are typically written 
in the M language of MATLAB† for rapid algorithmic 
development, and also have demanding performance 
requirements that cannot be met without parallelism 
[Elton08].  Exploiting parallelism while preserving 
algorithmic flexibility has high value to the larger project. 

Prior work [Elton09] has explored the parallelization of 
these algorithms with Star-P on general-purpose (i.e., x86-
64) processors, including the practical issues involved in 
running at large shared HPC centers, such as security and 
scheduling, and [Murphy] the use of hardware accelerators 
with M programs. 

Aims  
This work explores another dimension of performance for 
these algorithms, namely the use of general-purpose graphic 
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processing units (GPGPUs) for the bulk of the 
computational work, instead of general-purpose CPUs.  
Given the data size and computational intensity of typical 
RF tomography data, many GPUs must be used to meet the 
absolute performance demands, leading to the need to 
balance the parallelism within a chip with the parallelism 
across many chips.  Multiple GPUs can accelerate the 
performance of a fixed data size (i.e., strong scaling) or can 
cope with larger data sizes by scaling the number of GPUs 
proportionally with the data size (i.e., weak scaling).   

Methods 
The algorithm exhibits parallelism among different pulses 
of radio waveforms and among pixels in each image.  The 
algorithm is viewed as an M program, but the kernel that 
consumes more than 99% of the time was already coded in 
C for higher speed.  The first task was to extend the C code 
to the CUDA interface [Lindholm], simultaneously 
refactoring the processing between the C/CUDA code and 
M code so that the C/CUDA code would work correctly on 
a subset of the pulses in the data.  CUDA 2.0 (Bale) and 2.2 
(Lincoln) and Star-P version 2.8 (both) were used for the 
tests, with the Star-P client installed collocated with the 
server.  The Mex data-exchange interface was used to pass 
data between the M and C/CUDA functions executed via 
the Star-P Task Parallel Engine.  The ppeval task-parallel 
construct in Star-P was used to call multiple instances of the 
C/CUDA kernel (each working on its own data) 
simultaneously. Numerical differences did exist between 
double-precision execution in CPUs and single-precision 
execution in GPUs, but the differences were not visible in 
the resulting images. The initial data size was 180 pulses, 
which we used for our strong scaling work and as the per-
node size for weak scaling.   

The first system used was the Bale cluster at the Ohio 
Supercomputer Center, the GPU-accelerated portion of 
which consisted of 8 nodes, each with two AMD Opteron 
DualCore sockets (2.6Ghz) and two NVIDIA Quadro FX 
5600 GPUs, each with 128 cores running at 600MHz .  The 
second cluster used was the Lincoln cluster at the National 
Center for Supercomputing Applications, which consisted 
of 192 computer nodes, each a Dell PowerEdge 1950 dual-
socket node with quad-core Intel Xeon E5410 
(“Harpertown”) sockets (2.33GHz).  Pairs of these nodes 
shared access to a NVIDIA Tesla S1070 accelerator, each 
containing 4 Tesla GPUs, each with 240 cores running at 
1.44GHz. All the GPUs used were capable only of single-
precision floating-point arithmetic. 
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Performance Results 
The original serial algorithm processes 180 pulses in 45.2 
seconds on a single (x86-64) core of Bale.‡  With the 
CUDA kernel, it executes in 1.07s on 2 GPUs on a single 
node of Bale or 1.00s on 1 GPU of Lincoln, 42.2 and 45.2 
times faster, respectively, than a single x86-64 core.  We 
quickly discovered that, on Lincoln, using a second GPU on 
a node ran almost 2X slower, which we attributed to 
bandwidth-sharing on the PCI-Express 8x link  (contrasted 
with PCI-Express 16x links on Bale); thus our Lincoln 
results used only a single GPU per node, while the Bale 
results used 2 GPUs per node. 

The first dimension we explored was weak scaling, using 
the basic unit of 180 pulses per node. As expected (see 
Figure 2), on Bale each added node is as efficient as the 

first, enabling solution of an 8X larger problem in close to 
the same time.  On Lincoln, the results degraded somewhat 
up to 32 GPUs and then markedly at 48 GPUs, for reasons 
we do not fully understand.  With the 32-GPU case, this 
application effectively uses about 8,000 (32*240) cores. 

With success at demonstrating weak scaling across a 

modest number of GPUs, we turned our attention to a more 
demanding problem, that of reducing the run-time of a 
given problem size as far as practical by adding more 
GPUs, also known as strong scaling.   While this is clearly 
desirable in the interests of absolute performance, there are 
minimum amounts of work per chip or per core that we 
approach, given that each GPU has hundreds of cores in it, 
and the basic data size we used (180 pulses) runs for only 
                                                 
‡ Or 22 seconds on one core of an Intel® Xeon® 5450 socket(3.0GHz).  

45 seconds on a single CPU core.  Figure 2 shows a family 
of speed-up curves for different data sizes, with the slope of 
the Perfect line for comparison§.  On Lincoln, scaling is 
good until each GPU is executing only 180 pulses, which 
we did not try to subdivide further among GPUs.  On Bale, 
we subdivided even 180 pulses among multiple GPUs, 
showing that a factor of two reduction in absolute time is 
possible even if efficiency (on 8 GPUs, 4 times more GPUs 
to get 2 times more performance) is not ideal. 

Summary 
This work extends the use of the M productivity language 
deeply into parallelism, with one level of parallelism 
exploited within a GPU (via CUDA) and a second level of 
parallelism exploited between GPUs (via Star-P).  Weak 
scaling performs very well within the tested range (modulo 
the anomalies on Lincoln).  Strong scaling performs well 
down to the granularity of the basic data size, and bears 
more investigation of subdividing further to achieve 
absolute times below one second. 
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Figure 1.  Weak Scaling on Bale and Lincoln

Figure 2.  Strong Scaling on Bale and Lincoln


