
FAST PATTERN MATCHING IN 3D IMAGES ON GPUS

Patrick Eibl], Dennis Healy\, Nikos P. Pitsianis†‡ and Xiaobai Sun†

]Duke University, Department of Electrical and Computer Engineering, Durham, NC, USA
†Duke University, Department of Computer Science, Durham NC, USA

‡Aristotle University, Department of Electrical and Computer Engineering, Thessaloniki, Greece
\University of Maryland, Department of Mathematics, College Park MD, USA

Introduction. We introduce first a fast computation method
for similarity comparison of a 3D object template against a
3D image scene, as needed in object recognition or detec-
tion in cluttered 3D scenes [1, 2] or automated image regis-
tration and segmentation.Three dimensional images include
also spatio-temporal images as in detection and estimation of
motion of other changes in a temporal sequence of 2D spa-
tial images, and spatio-spectral images. We describe next an
effective scheme for mapping the algorithm to the existing
graphics processing units (GPUs) to exploit the modern com-
puter architecture for further acceleration of the computation.
Preliminary experiments and results are presented.
Local correlation coefficients. Many signal and image pro-
cessing applications require fast location of close matches, if
any, in a 2D or 3D scene image S to a particular pattern or
template T , according to certain criteria. We describe a par-
ticular matching criterion that accounts for non-rigid and non-
linear local changes in the scene image. We then describe a
fast method with full respect to the criterion. The description
is for the 2D case, with straightforward extension to higher-
dimensional cases.

Suppose there are NS and NT pixels or voxels in scene S

and template T , respectively. We may assume that both S

and T are real valued. Let P be a typical panel of S that
the template T overlaps with. Denote the mean value and
the standard deviation of a pixel/voxel collection Q by µ(Q)
and σ(Q), respectively. When neither T nor P is constant-
valued, σ(T )σ(P ) is nonzero. The correlation coefficient be-
tween the template T and the panel P for the 2D case can be
described as follows,

c(P, T ) =

∑
q [P (q) − µ(P )] · [T (q) − µ(T )]

NT · σ(T ) · σ(P )
. (1)

The correlation coefficient is a particular measurement of the
similarity between T and P . By the Cauchy-Schwartz in-
equality, c(P, T ) ∈ [−1, 1]. When c(P, T ) = 1, P is a per-
fect match to T , pixel by pixel, or voxel by voxel. When
c(P, T ) = 0, the panel P is orthogonal to the template T .

This work is supported in part by DARPA/MTO/DESA program.

All the panels of S with their relative locations in S

can be described in the 2D case as follows, Puv(x, y) =
S(x, y)BT (x−u, y−v), where BT is the binary-valued char-
acteristic function of the spatial support of the template. To
avoid redundant computation, we translate and normalize the
template T once for all so that µ(T ) = 0 and σ(T ) = 1.
Then, the local correlation coefficients (LCCs) of T with all
candidate panels can be described as follows,

c(u, v) =
1

σ̄(u, v)

∑

x,y

[Puv(x, y)−µu,v] T (x−u, y−v), (2)

where µu,v = µ(Puv) and σ̄(u, v) = σ(Puv)
√

NT . These
coefficients represent the collective and basic information for
subsequent location and analysis of best template matching.
It is nonlinear in the local means and standard deviations.

There is a connection from the LCC computation to certain
other important signal and image processing operations. For
example, without the translation in the mean value and the
normalization in the standard deviation, the LCC computation
becomes the convolution of S with an impulse function that
has the elements of T in reverse order.
Fast LCC calculation via the FFT. When the size of T

reaches to certain point, the calculation of the LCCs can be
made faster via the use of the FFT, in comparison to the direct
evaluation by (2). The computation complexity and hence ef-
ficiency had been a divisive issue in the choice of similarity
criteria between the so-called local correlation methods and
the Fourier domain methods employed for template match-
ing [3, 4]. In the latter, the local normalization is omitted. In
the method introduced below, without compromising the lo-
cal normalization, we use only two and a half 2D FFTs for
computing the LCCs for each scene image S, with a common
template.

We write the right-hand side of (2) into three cross-
correlation components,

∑

x,y

[P (x, y|u, v) − µ(u, v)] T (x − u, y − v) =

{S ∗ T}(u, v)− 1

NT

{S ∗ BT }(u, v) · {BS ∗ T}(u, v),



with {S ∗T}(u, v) =
∑

x,y

S(x, y) T (x−u, y− v), where BS

is the binary-valued characteristic function of the support of
S. We re-write the expression of the standard deviation dis-
tribution σ2(u, v) on the left side of (2) into cross-correlation
terms as well,

NT σ2(u, v) = {S2 ∗ BT }(u, v) − NT µ2(u, v)

=
∑

x,y

S2(x, y)BT (x − u, y − v) − NT µ2(u, v).

The reformulation above leads to efficient array operations
and enables the use of multi-dimensional FFTs.

We elaborate on how to use only 2.5 FFTs in computing the
LLC distribution per scene. By the cross-correlation theorem,
the four cross-correlation components can be computed via
the following five quantities in the Fourier domain F (BT ),
F (T ), F (BS), F (S) and F (S2) and the inverse FFT of the
point-wise products, F (T ) · F (BS), F (T ) · F (S), F (BT ) ·
F (S) and F (BT ) · F (S2). For a sequence of scene images,
the quantities associated with BT , BS and T only shall be
computed once for all. Thus, for each scene image, we can
use one FFT with S + i · S2 to obtain both F (S) and F (S2)
at the same time, then use one inverse FFT from the scaled
quantities F (BT ) · F (S) and F (BT ) · F (S2) to obtain two
cross-correlation components S ∗ BT + iS2 ∗ BT , and use
another inverse FFT to obtain S ∗ T from the scaled quantity
F (S)·F (T ) in the Fourier domain. Exploiting the real-valued
property of S ∗ T , the operations in the last inverse FFT can
be reduced to a half.

The total number of real arithmetic operations in comput-
ing the LCC distribution per scene is about 12.5N log(N) +
αN with N the number of computed coefficients. For equi-
lateral image S and T with sides NS and NT respectively per
dimension, N = (NT + NS − 1)d, where d is the dimen-
sion. The constant α in the linear term is a modest number,
accounting for the element-wise products in the Fourier do-
main and the packing and unpacking operations before and
after each FFT.
Mapping to GPUs via CUDA. There are certain distinct ad-
vantages in using GPUs for pattern matching in 3D images.
First, there are intimate connections and similarities in pro-
cessing and rendering between graphics and image applica-
tions. Secondly, GPUs can be easily integrated as a special
accelerator into a host computer such as a desktop or an exist-
ing embedded imaging system. Thirdly, GPU programming
environments, such as CUDA by NVIDIA, leverage the in-
creasing degree of parallelism in many-cores hardware for
computing tasks beyond graphics processing and rendering.

The parallelization of the LCC computation centers on the
partition of the output data space. To utilize the hierarchical
GPU memory structure, we partition the LCC output array
into hierarchical subarrays accordingly. Every element of the
LCC output is assigned to a distinct CUDA thread. In CUDA,
threads are grouped into blocks. The threads in each block

share a memory local to the block, which contains a subarray
of the input scene and a copy of the template. There is no
overlapping in the LCC output array among the threads within
a block or across blocks. In other words, the mutual exclusion
in writing is guaranteed by the algorithmic arrangement. The
subarrays of the input scene image on neighbor blocks overlap
at their boundary areas, and the element-wise threads on each
block read from the same input subarray. The size of input
and output subarrays is determined to maximally utilize the
shared memory of each thread block.

The experiments with GPU-accelerated calculation were
carried out with the following setups. The host machine is
a Dell T5400 workstation with a quad-core Intel Xeon at
2.50GHz. One core is used for the host control. Two differ-
ent NVIDIA Tesla cards are used as accelerators in separate
experiments. One is the C870 GPU with 128 streaming pro-
cessor cores running at 1.35GHz. It has 1.5GB of dedicated
memory and a 384-bit memory interface with a bandwidth of
76.8GB/sec. The other is the C1060 GPU with 240 streaming
processor cores running at 1.35GHz. It has 4GB of dedicated
memory and a 512-bit memory interface with a bandwidth of
102GB/sec. The experiments without GPU acceleration were
carried out on the host machine with only one core activated
for the calculation.

Both the direct calculation and the calculation via the FFT
are implemented. In the latter, the CUFFT from the CUDA
2.1 SDK is used. Preliminary results showed substantial GPU
acceleration, with each of the GPU cards. The LCC calcula-
tion with GPUs is 32 to 43 times faster than that without,
with the size of scene images up to 5133 and the size of tem-
plates up to 83. With larger template size, the approach via
the FFT is indeed faster. The cross-over point in the template
size between the direct approach and the FFT approach, by
the present implementations, is about 8 × 8 for the 2D case
and 6 × 6 × 6 for the 3D case.

1. REFERENCES

[1] A. E. Johnson and M. Hebert, “Efficient multiple model
recognition in cluttered 3-D scenes,” Proc. IEEE Conf.
Comp. Vision and Pat. Rec., pp. 671–677, 1998.

[2] S. Allney and C. Morandi, “Digital image registration
using projections,” IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-8, pp. 222–233, Mar 1986.

[3] L. G. Brown, “A survey of image registration techniques,”
ACM Comput. Surv., vol. 24, no. 4, pp. 325–376, 1992.

[4] B. S. Reddy and B. N. Chatterji, “An FFT-based tech-
nique for translation, rotation, and scale-invariant image
registration,” IEEE Trans. Image Proc., vol. 5, no. 8, pp.
1266–1271, 1996.


