

Kronecker Products-based Regularized Image Interpolation Techniques

Blas Trigueros (presenter) Ricardo H. Castañeyra Juan Valera Domingo Rodriguez

University of Puerto Rico at Mayaguez 9/23/2009

HPEC 2009 Workshop

- In this work, we present a parallel implementation of an image interpolation algorithm based on the *Tikhonov* regularization technique, for the restoration of a (high resolution) HR image from a (low resolution) LR noisy image.
- Previous work:
 - Direct interpolation (cubic spline, adaptive spline...)
 - Regularization functional-based interpolation [1].
 - Discrete Cosine Transform (DCT) based techniques [2].
- Solution approach:
 - Parallel implementation performed using pMATLAB based on the regularized interpolation technique proposed by Li Chen *et al.* [3].
 - Data parallelism is employed to reduce execution time by partitioning the image into overlapping subimages.
 - Overlapping technique is introduced to avoid edge distortions.

Implementation Model

Observation model:

$$g = DHf + n,$$

$$H = H_1 \otimes H_2 \qquad D = D_1 \otimes D_2$$

f: high-resolution image g: low-resolution image D: decimation matrix H: low-pass filter (blurring)

n: additive noise

 $\begin{array}{c} D_1 H_1 = U_1[\Sigma_1 \mid 0] V_1^T \\ D_2 H_2 = U_2[\Sigma_2 \mid 0] V_2^T \end{array} \end{array} \longrightarrow min \left\| \begin{bmatrix} \left(\begin{bmatrix} [\Sigma_1 \mid 0] \otimes [\Sigma_2 \mid 0] \end{bmatrix} \right) \\ \sqrt{\lambda}I \end{bmatrix} y - \begin{bmatrix} z \\ 0 \end{bmatrix} \right\|_2^2 \longrightarrow f = Vect(V_2Mat(y)V_1^T)$

- This algorithm takes advantage of SVD and Kronecker products to reduce the computational cost of the regularized solution.
- But the SVD computation grows as O(N³), prohibitive for large matrices.
- Parallel Implementation:
 - In our implementation of the algorithm, the image is partitioned into subimages, and each processor computes a portion of the final result.

Each processor *Pi* computes an SVD of dimension: $\frac{1}{\sqrt{Np}} \times N \times kN$

NxN: dimension of the LR image *k*: decimation factor *Np*: number of processors

Performance Results

HR image size	Execution time (s) MATLAB serial	Execution time (s) pMATLAB
256 x 256	0.0347	0.0067
512 x 512	0.3397	0.0399
1024 x 1024	1.96	0.2480
2048 x 2048	18.62	1.85
4096 x 4096	211	20.44
8192 x 8192	2471	219
16384 x 16384	13864	1982

(a) Figure 1: (b) (a) LR image, (b) HR image.

Table 1: Execution time results of the interpolation algorithm in MATLAB and pMATLAB (4 processors, 2x2 mapping)

✓ Computation time is reduced by using distributed arrays on pMATLAB for the SVD operation.

- References:
 - [1] Julie Kamm and James G. Nagy, "Kronecker product and SVD approximations in image restoration," Linear Algebra and its Applications, Vol. 284, pp. 177-192, Jan 1998
 - [2] Yoshinori Abe, Youji luguni, "Image restoration from a downsampled image by using DCT," Signal Processing, 87, pp. 2370-2380, Mar 2007
 - [3] Li Chen and Kim-Hui Yap, "Regularized Interpolation Using Kronecker Product for Still Images," IEEE International Conference on Image Processing, Vol. 2, pp. 1014-17, Sep 2005.