
Developing Fast DSP Libraries for Advanced Processors.
David Murray, N.A. Software Ltd (davem@nasoftware.co.uk)

Mike Delves, N.A. Software Ltd (delves@nasoftware.co.uk)

Introduction
The high performance embedded DSP processor market has
moved steadily over the past decade from one dominated by
specialised fixed point processors towards those with
recognisable similarities to the general-purpose processor
market: DSP processors have provided floating point,
substantial caches, and capable C/C++ compilers, as well as
SIMD (Single Instruction Multiple Data) features
providing fast vector operations. The inclusion of SIMD
features to general purpose processors has led to them
replacing specialised DSPs in many high performance
embedded applications (such as Radar, SAR, SIGINT and
image processing).

More recently, multicore processors have become common
and will likely dominate in the next five years. The easiest
way for existing DSP code to make use of the increased
power available, is via standard DSP libraries; but it
remains a major task to multithread these.

We describe here a tool which automates the threading of a
wide class of DSP routines, and give examples of its
effectiveness.

Liberator
Liberator is our system for automatically generating
numerical libraries. It produces highly efficient libraries
for a range of processors together with a variety of API's
(Application Programmers Interface); it also generates test
and timing programs, together with standard
documentation. Liberator thus allows DSP libraries to be
produced and updated cost effectively without loss of
efficiency: indeed, -produced libraries typically match or
out-perform hand coded libraries.

How It Works
Liberator targets processors with a SIMD capability such as
the PowerPC G4 with Altivec, or Intel with SSE2/SSE4. It
uses a four-level hierarchy of metadata providing
information on how to generate the code for a function:

Level-0: API function. This level describes how routines
will be called. In development versions of the libraries,
error checking on arguments is done here.

Level-1: provides a simple C-based description of what
each routine does.

Level-2: contains the bulk of the operations carried out by
Liberator. It generates code which packages the data into
single vectors and performs a range of optimisations. It:

blocks the data;

unrolls block loops;

prefetches blocks when this is helpful;

Implements appropriate cache management strategies
(these are target dependent);

Implements strategies which depend upon the data. For
example, aligned and unaligned data are treated separately,
as are vectors with stride 1 (contiguous data) or 2 (typically
interleaved complex data);

Handles "edge effects": vector or matrix sizes which are not
a multiple of the SIMD length.

Level-3: implements basic vector operations on SIMD-sized
vectors. This is the level at which hand coded or
manufacturer-provided code building blocks are accessed,
including assembler code blocks for FFT and other
routines.

Adding Multithreading
Multithreading fits naturally into the Liberator framework
at Level 2. To include it we need to:

• Design multithtreading strategies for classes of
algorithms

• Teach Liberator about these

• Tune Liberator's knowledge base for a specific
target system so that the library routines utilise the
optimum number of threads for a specific call.

The tuning phase is itself automated, alongside the
corresponding tuning for loop unrolling depth etc; Liberator
will emit a library tuned for a specific board, if requested.

Currently vector, matrix and FFT routines (1D and 2D)
utilise separate threading strategies.

How Well does it Work?
Figure 1 shows Mflop rates obtained for a multiple 1D
complex FFT routine, running on an Intel dual-core
SL9400 system at 1.66GHz. Results are given for
comparison on a 1GHz 8641D, and a 2.16GHz Intel T7400
board. The threading is obviously very effective. Similar
results are obtained in other routines, and we now have a
production threaded VSIPL library (other APIs arealso
supported by Liberator) for multicore Intel SSE processors.

Further results on systems utilising up to 24 cores will be
shown in the full paper.

mailto:davem@nasoftware.co.uk

Single precision multiple FFT perfomance

0

2000

4000

6000

8000

10000

12000

14000

256 x 256 1K x 100 4K x 50 16K x 20 64K x 20 128K x 20

Matrix size

M
FL

O
PS

8641D

IA T7400

IA SL9400

IA SL9400 -
two threads

Figure 1 Complex to complex multiple 1D in-place
FFTs: MFLOPS = 5 N Log2(N) / (time for one row FFT
in microseconds)

Data: M rows of length N; FFT the rows.

Other Conversion Tools
The performance figures in Figure 1 also illustrate why
there is high interest in moving from the PowerPC to the
Intel range of processors for compute-intensive DSP
applications. However, in moving to a new processor it's
not only the hardware and the libraries that need porting:
applications that make use of low level processor features
have to be ported too. We have two (Intel funded) porting
tools under development:

1. altivec2sse.h: for PPC/Altivec programmers who
address the altivec via the include file altivec.h,
altivec2dde.h targets Intel SSE instructions rather
than altivec instructions.

2. PPC/Altivec assembler compiler: will provide
more general assembler conversion facilities.

Item 1 is available no (it's free). Item 2 is at a relatively
early development stage.

The full paper will give a brief progress report on Item 2.

Acknowledgements
The performance figures given here were provided courtesy
of GE Fanuc; we are grateful to David Tetley for running
these benchmarks.

