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Introduction 
Wireless sensor nodes, despite their limited 

computational and power resources, can exhibit effective 

processing capabilities if collaborative distributed 

processing is explored.  Distributed collaborative 

computing on wireless sensor nodes can reduce the energy 

consumption per node and speed up the response time of 

the system. The applications of wireless sensor networks in 

target tracking and environment monitoring pose a common 

computational problem that deals with signal processing 

tasks, like beamforming. An essential part of this 

computation relies on least squares solutions. QR 

decomposition is an efficient factorization that transforms a 

least squares problem into a triangular least squares 

problem which is easier to solve.  

The QR decomposition of a matrix A of size  

where , gives the two matrices R and Q, where Q is 

an orthogonal matrix of size  and R is an upper 

triangular matrix of size  such that Eq.1 is satisfied.  

 (1) 

The contributions of this work are developing a QR 

decomposition algorithm which is suitable for distribution 

and parallelization on wireless sensor networks, and 

implementing the distributed version of the proposed 

algorithm on a test bed of Telosb [2] wireless sensor nodes. 

Our experiments prove that the algorithm reduces the 

energy per node, on average, by 1.87x and speeds up the 

computation, on average, by 1.61x. This work lays the 

foundation for implementing other numerical methods for 

distributed processing over energy and resource-constrained 

wireless sensor nodes. 

Proposed Algorithm 

The proposed algorithm is inspired by the AllReduce 

method [3] and mixes Householder reflections and Givens 

rotation. Consider a  matrix A; the proposed 

algorithm has the following steps:  

- Divide A into p vertical partitions . For 

simplicity we consider partitions of equal sizes .   

- Each vertical partition  is further divided into q blocks 

. The blocks are of equal sizes  where 

. 

- The algorithm is recursive where each iteration calculates 

the QR decomposition of one vertical partition. Thus the 

algorithm has p steps and the p
th

 step involves calculating 

the QR decomposition of only 1 block . The colored 

blocks in Figure 1a indicate those which are processed in 

each iteration for a matrix of size with p = 3, q = 3 

and blocks of size . Each iteration involves the 

following steps:  

- Calculate the QR decomposition, using Householder 

reflections, of the blocks  simultaneously, where 

j is the partition index and . The calculation of the R 

matrix is done in-place, replacing the original block; while 

the Q matrix requires extra storage.  The new partition  

has its blocks in upper triangular form.  

- The blocks of , except for the first block, will have their 

entries annihilated in this step using parallel Givens.  The 

procedure is to couple two blocks  and  where  is 

called the reference block. ‟s entries are totally 

annihilated by using the rows of . The annihilation using 

Givens rotations consists of  rotation matrices for a block 

size of . The sequence in which the elements of  are 

annihilated using the rows of is illustrated in Figure 1b. 

It is very important to zero the entries in the specified order 

so that previously zeroed entries are not filled in again. At 

the end of this stage, of  is the resulting matrix, and  

is the product of all the Givens rotation matrices. 

The Givens algorithm here is iterative and the number of 

iterations, g, depends on the number of blocks q (Eq.2).  

 (2) 

- Using AllReduce, the QR decomposition of the original 

partition  is deduced from  and . AllReduce method 

is used for calculating the QR decomposition of long and 

“skinny” matrices where the data is partitioned horizontally, 

in a way similar to our scenario. Following AllReduce, 

is partitioned into  partitions. The ‟s calculated in 

the first step using householder reflections are now 

multiplied by the corresponding . The final  is 

obtained by stacking the product  for each block. 

Figure 2 illustrates applying AllReduce on a partition . 

Figure 3 illustrates the proposed algorithm for p=3 and 

q=3. An important contribution of this work is using 

AllReduce in finding the final Q matrix from the vertical 

partitions of an original matrix; rather than calculating the R 

matrix only, as found in literature. 

 
(a) (b) 

Figure 1: (a) Processed blocks for p=3 and q=3,  

(b) Annihilation sequence in parallel Givens 

 

 
Figure 2: AllReduce method applied to a thin matrix [3] 



Proposed Distribution 
The proposed distribution considers the scenario when 

one of the sensor nodes distributes the computation problem 

amongst its neighbors. In this case, the algorithm has the 

following phases:  

 
Figure 3: Illustration of the proposed algorithm 

 

Initialization Phase: the distributing node broadcasts an 

INVITE message which specifies the computation 

operation and the size of the matrix to be distributed. 

Sub-cluster Formation Phase: the neighboring nodes send 

STATUS messages to the distributing node and commit to 

joining the computation cluster. In the STATUS message, 

the nodes specify their residual voltage (RV) which is a 

physical layer parameter that indicates the battery level. 

Task Mapping Phase: the distributing node determines the 

matrix partition parameters p and q, runs an energy-aware 

task allocation algorithm, and unicasts each task to the 

selected neighboring node. To determine q, the simplest and 

most efficient way is to divide each partition into q blocks 

where q is equal to the number of nodes to handle the 

computation. If q is greater than the number of nodes, then 

full parallelism in the QR calculation for each block, cannot 

be exploited. On the other hand, choosing a big q means 

that the partitions are smaller and more nodes are utilized; 

consequently, the communication overhead encountered to 

manage all the nodes involved can easily overcome the 

advantages of distributing the computation. The number of 

partitions, p, dictates the number of iterations of the 

algorithm. Therefore, smaller p (larger v) directly impacts 

the speed of the computation.  

Considering that the distributing node has the same 

resource constraints as the other nodes in the WSN, it is 

necessary that the task allocation and scheduling algorithms 

are simple and light-weight. „List‟ algorithm was used in 

which the distributing node maintains a list of the 

participating nodes and sorts it in decreasing order of RV. 

The first q nodes are selected as candidates. The blocks are 

unicasted to the corresponding nodes and each node is 

assigned a temporary code (ID) which is the index of the 

block assigned to it. The significance of this ID is explained 

in the next phase.  

Computation and Result Gathering Phase: the 

computation is carried out by the nodes as described in the 

previous section, and the results are reported back to the 

distributing node. The main operations are: 

- Householder reflection to obtain R and Q  

- Parallel Givens where the nodes are coupled in pairs. One 

node (reference node) holds the reference block, and the 

other node (annihilated node) holds the block to be 

annihilated by the reference block. The reference node has 

an even ID, it sends its R to the annihilated node whose ID 

can be deduced according to Eq.3. The updated reference 

block is sent back to the reference node, and the G matrix 

calculated by the annihilated node is sent to the distributing 

node. The distributing node calculates Qv as the product of 

all G matrices.  At the end of this stage, the whole partition 

Vi is in upper triangular form. Therefore, the resulting 

matrix Rv is the R matrix of the original Vi, but the resulting 

Qv is not the Q of Vi.  

 (3) 

- AllReduce is carried out to obtain Qfinal from Qv. After 

calculating Qv, the distributing node partitions it into blocks 

(QWi) and unicasts the blocks to the corresponding nodes. 

The nodes simply multiply their local matrix Qi, obtained in 

the first operation with QWi. The result is reported to the 

distributing node which replaces the current partition by the 

new Qfinal. The previous operations are repeated until all the 

partitions are processed. The final result is the 

multiplication of all Qfinal matrices. 

 
Figure 4: The proposed algorithm and its distribution 

Experimental Results 
The power consumption of the Telosb nodes was 

determined using the shunt resistor method [1]. Figure 5 

shows the energy consumption per node and the time 

required for running the QR decomposition in centralized 

and distributed manner, for different matrix sizes. The 

proposed distribution achieves up to 2x speed up and up to 

2.1x energy savings per node. 

 
Figure 5: Energy per node (mJ) and time (sec) for Centralized 

and Distributed QR Decomposition for different matrix sizes 
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