
QR Decomposition: Demonstration of Distributed Computing on Wireless Sensor

Networks
Sherine Abdelhak, Soumik Ghosh, Rabi Chaudhuri, Magdy Bayoumi

The Center for Advanced Computer Studies, University of Louisiana at Lafayette

{spa9242, sxg5317, rsc5446, mab} @ cacs.louisiana.edu

Introduction
Wireless sensor nodes, despite their limited

computational and power resources, can exhibit effective

processing capabilities if collaborative distributed

processing is explored. Distributed collaborative

computing on wireless sensor nodes can reduce the energy

consumption per node and speed up the response time of

the system. The applications of wireless sensor networks in

target tracking and environment monitoring pose a common

computational problem that deals with signal processing

tasks, like beamforming. An essential part of this

computation relies on least squares solutions. QR

decomposition is an efficient factorization that transforms a

least squares problem into a triangular least squares

problem which is easier to solve.

The QR decomposition of a matrix A of size

where , gives the two matrices R and Q, where Q is

an orthogonal matrix of size and R is an upper

triangular matrix of size such that Eq.1 is satisfied.

 (1)

The contributions of this work are developing a QR

decomposition algorithm which is suitable for distribution

and parallelization on wireless sensor networks, and

implementing the distributed version of the proposed

algorithm on a test bed of Telosb [2] wireless sensor nodes.

Our experiments prove that the algorithm reduces the

energy per node, on average, by 1.87x and speeds up the

computation, on average, by 1.61x. This work lays the

foundation for implementing other numerical methods for

distributed processing over energy and resource-constrained

wireless sensor nodes.

Proposed Algorithm

The proposed algorithm is inspired by the AllReduce

method [3] and mixes Householder reflections and Givens

rotation. Consider a matrix A; the proposed

algorithm has the following steps:

- Divide A into p vertical partitions . For

simplicity we consider partitions of equal sizes .

- Each vertical partition is further divided into q blocks

. The blocks are of equal sizes where

.

- The algorithm is recursive where each iteration calculates

the QR decomposition of one vertical partition. Thus the

algorithm has p steps and the p
th

 step involves calculating

the QR decomposition of only 1 block . The colored

blocks in Figure 1a indicate those which are processed in

each iteration for a matrix of size with p = 3, q = 3

and blocks of size . Each iteration involves the

following steps:

- Calculate the QR decomposition, using Householder

reflections, of the blocks simultaneously, where

j is the partition index and . The calculation of the R

matrix is done in-place, replacing the original block; while

the Q matrix requires extra storage. The new partition

has its blocks in upper triangular form.

- The blocks of , except for the first block, will have their

entries annihilated in this step using parallel Givens. The

procedure is to couple two blocks and where is

called the reference block. ‟s entries are totally

annihilated by using the rows of . The annihilation using

Givens rotations consists of rotation matrices for a block

size of . The sequence in which the elements of are

annihilated using the rows of is illustrated in Figure 1b.

It is very important to zero the entries in the specified order

so that previously zeroed entries are not filled in again. At

the end of this stage, of is the resulting matrix, and

is the product of all the Givens rotation matrices.

The Givens algorithm here is iterative and the number of

iterations, g, depends on the number of blocks q (Eq.2).

 (2)

- Using AllReduce, the QR decomposition of the original

partition is deduced from and . AllReduce method

is used for calculating the QR decomposition of long and

“skinny” matrices where the data is partitioned horizontally,

in a way similar to our scenario. Following AllReduce,

is partitioned into partitions. The ‟s calculated in

the first step using householder reflections are now

multiplied by the corresponding . The final is

obtained by stacking the product for each block.

Figure 2 illustrates applying AllReduce on a partition .

Figure 3 illustrates the proposed algorithm for p=3 and

q=3. An important contribution of this work is using

AllReduce in finding the final Q matrix from the vertical

partitions of an original matrix; rather than calculating the R

matrix only, as found in literature.

(a) (b)

Figure 1: (a) Processed blocks for p=3 and q=3,

(b) Annihilation sequence in parallel Givens

Figure 2: AllReduce method applied to a thin matrix [3]

Proposed Distribution
The proposed distribution considers the scenario when

one of the sensor nodes distributes the computation problem

amongst its neighbors. In this case, the algorithm has the

following phases:

Figure 3: Illustration of the proposed algorithm

Initialization Phase: the distributing node broadcasts an

INVITE message which specifies the computation

operation and the size of the matrix to be distributed.

Sub-cluster Formation Phase: the neighboring nodes send

STATUS messages to the distributing node and commit to

joining the computation cluster. In the STATUS message,

the nodes specify their residual voltage (RV) which is a

physical layer parameter that indicates the battery level.

Task Mapping Phase: the distributing node determines the

matrix partition parameters p and q, runs an energy-aware

task allocation algorithm, and unicasts each task to the

selected neighboring node. To determine q, the simplest and

most efficient way is to divide each partition into q blocks

where q is equal to the number of nodes to handle the

computation. If q is greater than the number of nodes, then

full parallelism in the QR calculation for each block, cannot

be exploited. On the other hand, choosing a big q means

that the partitions are smaller and more nodes are utilized;

consequently, the communication overhead encountered to

manage all the nodes involved can easily overcome the

advantages of distributing the computation. The number of

partitions, p, dictates the number of iterations of the

algorithm. Therefore, smaller p (larger v) directly impacts

the speed of the computation.

Considering that the distributing node has the same

resource constraints as the other nodes in the WSN, it is

necessary that the task allocation and scheduling algorithms

are simple and light-weight. „List‟ algorithm was used in

which the distributing node maintains a list of the

participating nodes and sorts it in decreasing order of RV.

The first q nodes are selected as candidates. The blocks are

unicasted to the corresponding nodes and each node is

assigned a temporary code (ID) which is the index of the

block assigned to it. The significance of this ID is explained

in the next phase.

Computation and Result Gathering Phase: the

computation is carried out by the nodes as described in the

previous section, and the results are reported back to the

distributing node. The main operations are:

- Householder reflection to obtain R and Q

- Parallel Givens where the nodes are coupled in pairs. One

node (reference node) holds the reference block, and the

other node (annihilated node) holds the block to be

annihilated by the reference block. The reference node has

an even ID, it sends its R to the annihilated node whose ID

can be deduced according to Eq.3. The updated reference

block is sent back to the reference node, and the G matrix

calculated by the annihilated node is sent to the distributing

node. The distributing node calculates Qv as the product of

all G matrices. At the end of this stage, the whole partition

Vi is in upper triangular form. Therefore, the resulting

matrix Rv is the R matrix of the original Vi, but the resulting

Qv is not the Q of Vi.

 (3)

- AllReduce is carried out to obtain Qfinal from Qv. After

calculating Qv, the distributing node partitions it into blocks

(QWi) and unicasts the blocks to the corresponding nodes.

The nodes simply multiply their local matrix Qi, obtained in

the first operation with QWi. The result is reported to the

distributing node which replaces the current partition by the

new Qfinal. The previous operations are repeated until all the

partitions are processed. The final result is the

multiplication of all Qfinal matrices.

Figure 4: The proposed algorithm and its distribution

Experimental Results
The power consumption of the Telosb nodes was

determined using the shunt resistor method [1]. Figure 5

shows the energy consumption per node and the time

required for running the QR decomposition in centralized

and distributed manner, for different matrix sizes. The

proposed distribution achieves up to 2x speed up and up to

2.1x energy savings per node.

Figure 5: Energy per node (mJ) and time (sec) for Centralized

and Distributed QR Decomposition for different matrix sizes

References
[1] A. Milenkovic, M. Milenkovic, E. Jovanov, D. Hite and D.

Raskovic, “An environment for runtime power monitoring of

wireless sensor network platforms”, 37th Southeastern

Symposium on System Theory, Tuskegee, AL, Mar. 2005.

[2] J. Polastre, R. Szewczyk and D. Culler, Telos: “Enabling

ultra-low power wireless research”, Fourth International

Conference on Information Processing in Sensor Networks:

Special track on Platform Tools and Design Methods for

Network Embedded Sensors (IPSN/SPOTS), Apr 2005.

[3] J. Langou, “All Reduce Algorithms: Applications to QR

factorization”,Tech. Report 80-02, ETH, Zurich, Switzerland,

1980.

30x30 40x40 60x60

5.43mJ 7.44mJ 11.55mJ
8.03mJ 15.64mJ 22.88mJ

39.50s

91.40s

129.80s

38.11s
47.72s

63.12s

Energy_Distributed
Energy_Centralized
Time_Distributed
Time_Centralized

Matrix Size

