
“Disruptive” Applications of GPGPU Technology

Matthew Curry, University of Alabama at Birmingham, curryml@cis.uab.edu
Anthony Skjellum, University of Alabama at Birmingham, tony@cis.uab.edu

Abstract
GPUs (Graphics Processing Units) are gaining a foothold
in various industries to accelerate several types of
applications, comprising a potential disruptive
technology [1] in computing; that is, one capable of
creating a new area of development. Well-known
examples include image processing [2], linear algebra [3],
and protein folding [4]. These application areas are
extrapolations of applications that had previously used
SIMD instruction sets, such as SSE (Streaming SIMD
Extensions), and leverage the power of GPUs in much the
same way that SIMD instruction sets are used. However,
the GPUs of today are very different architecturally from
SIMD-capable processors. More importantly, GPUs are
also unique when compared to the various families of
multi-core processors, from Intel’s latest offerings to the
Cell Broadband Engine. There exist significant
applications that traditionally perform poorly on these
types of processing units that stand to benefit highly from
GPU-like architectures.

One such application is RAID, explored in the GPU-RAID
project [5], an effort that aims to replace expensive
hardware-based RAID controllers with software RAID
solutions. The basis of this work is in the Reed-Solomon
coder/decoder, which is more than an order-of-magnitude
faster than the best available CPU implementations. For
this particular application, the considerable mathematical
capabilities of the GPU are not stressed. Instead, the
unique multi-banked multi-memory architecture is utilized
to its highest extent, allowing dozens to hundreds of
memory lookups to occur simultaneously. Initial
investigations into lossless compression expose similar
benefits.

With the advent of transparently accessible GPU-based
libraries and frameworks, GPU computing could be the
ultimate performance booster of many codes with little
change to user-level applications. Previously, because of
the immaturity and absence of general-purpose
programming models, GPU applications were extremely
difficult to form and modify without being deeply involved
in graphics APIs. Furthermore, until now, true general-
purpose toolkits have been vendor-specific [6,7], requiring
a developer to choose platforms to support. However, with
the arrival of OpenCL [8], there are now two vendor-
neutral flexible points between an application and a GPU
that will allow for transparent performance gains:
Improvements in the hardware (which can execute
compatible code more quickly without modification), and
improvements in the library (which can evolve with the
API or incorporate optimizations and new algorithms).
Since the library is programmed in OpenCL,
improvements need not be expressed in ways that limit the
applicability of the library to a certain vendor.

The goal of this talk is to offer evidence that the GPU is
not limited to a small subset of computation in specific
fields, but is a way to improve many key application areas
today. In order to achieve this goal, we will describe the
reasons GPUs are becoming more important as a platform
for more traditional HPC/HPEC organizations (such as the
U.S. Department of Energy and the U.S. Department of
Defense), including the vendor-neutral and familiar means
of obtaining performance. We will describe the
architecture in a manner to compare and contrast with
other popular architectures. Finally, we will present a
survey some of the more non-traditional GPU applications
and libraries that exercise the platform in unusual and
novel ways. We specifically show some of the features
of GPUs that allow high performance where CPUs lag.

References
[1] L.J. Bower and C.M. Christensen. "Disruptive

Technologies: Catching the Wave," Harvard Business
Review, Vol. 73, No. 1, January-February 1995.

[2] J. Cornwall, O. Beckmann and P. Kelly. “Accelerating a
C++ Image Processing Library with a GPU,” POHLL
2006: Workshop on Performance Optimization for High-
Level Languages and Libraries (colocated with IPDPS06,
Rhodes), 2006.

[3] V. Volkov and J.W. Demmel. “Benchmarking GPUs to
Tune Dense Linear Algebra,” SC '08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing, 2008.

[4] M.S. Friedrichs, P. Eastman, V. Vaidyanathan, M.
Houston, S. Legrand, A.L. Beberg, D.L. Ensign and C.M.
Bruns, V.S. Pande. “Accelerating Molecular Dynamic
Simulation on Graphics Processing Units,” Journal of
Computational Chemistry, Vol. 30, No. 6, 2009.

[5] M.L. Curry, A. Skjellum, H.L. Ward and R. Brightwell.
"Arbitrary Dimension Reed-Solomon Coding and
Decoding for Extended RAID on GPUs," Petascale Data
Storage Workshop, 2008.

[6] D. Kirk. “NVIDIA CUDA Software and GPU Parallel
Computing Architecture,” ISMM ‘07: Proceedings of the
6th International Symposium on Memory Management,
2007.

[7] AMD. “AMD Stream Computing: Software Stack,”
http://ati.amd.com/technology/streamcomputing/firestream-
sdk-whitepaper.pdf, 2007.

[8] Khronos OpenCL Working Group. “The OpenCL
Specification: Version 1.0,” 2009.

