
Examples: Floating Point IP using FPC Altera FPGAs deliver:
 A powerful mix of fixed and floating point performance
 Extensive hard DSP capabilities

− IEEE754 single and double precision specifically supported
 100s 36x36 multipliers
 ~100 54x54 multipliers

 Superior computational density per Watt than other solutions
− In a recent National Science Foundation benchmark, a Stratix® IV

FPGA delivered 171 GFLOPS, and was the clear overall leader in
highest GFLOPs/Watt.

 Sustained peak performance

Matrix Multiplier Core
 Feed forward architecture

− Rows and columns blocked
− Partial results cached and process in

secondary pipe
 Extensible and parameterizable

− Single and double precision, real and
complex numbers

− Matrix dimensions
− Area, performance, resource balancing

 Memory depth and bandwidth
 Dot product to matrix dimension ratio

41600 (sp) / 48000 (dp) 20681 (sp) / 26004 (dp) 283 21457 (sp) / 27346 (dp) 64x64

7800 (sp) / 9000 (dp) 4587 (sp) / 7855 (dp) 75 5197 (sp) / 8652 (dp)12x12

Core LogicVector LogicDSPLogicMatrix Size
 Vector Logic:

− compiled data-path
 Logic:

− compiled data-path +
application

 Core Logic:
− equivalent data-path

constructed from discrete
cores

Devices
 Floating Point density largely determined by hard multiplier density

− Altera Multipliers efficiently support floating point mantissa sizes

X X X X

Σ
X X X X

Σ
X X X X

Σ

Σ
AC[36:1] (AD+BC)[54:1] BD[72:1]

X X X X

Σ
Single Precision
Single Extended
Precision

Double Precision

Four 18x18 fixed point
multipliers seamlessly
blended to make a 36x36
multiplier - completely in hard
logic DSP Block

Single soft logic adder required to make
a 54x54 multiplier, 2½ DSP Blocks

Tools: Floating Point Compiler (FPC)
 Conventional Wisdom : IEEE754 system level design too complex for FPGAs

− Floating Point core based design requires more soft logic than a fixed point FPGA
supports

 But IEEE754 data-path inefficient: functional redundancy between operators
− Required for processors – unlimited operation combinations

 Arithmetic unit requires all inputs and outputs to be of a known format
− Not required for data-path – a priori knowledge of inter-operator

relationships
 Data-path unit requires all inputs and outputs to be IEEE754 format
 Internal format only has to guarantee that casting to and from IEEE754 is correct

 Build an FPC tool that exploits a priori knowledge of inter-operator
relationships & has freedom to apply data-path level optimizations

Tools: DSP Builder Advanced / FPC Integration

Fixed Point domain:
 Automatic pipelining to meet required Fmax

 Similar performance as optimized HDL
 Easy timing closure - fewer iterations

Floating Point domain:
 Apply Floating Point Compiler fused
 data-path optimizations

Effortless FPGA Implementation Fast Design Space Exploration
Integrated design, simulation and generation
Fast multi-channel design implementation
Automatic generation of control plane logic
Efficient pipelining for multi-channel data paths
Driven by system level parameters
Effortless FPGA device family retargeting

 Example: LU Matrix
Decomposition

Cores
 Optimized ‘MATH.H’ function library

− Multiplier-based algorithms give low latency, low power, high
performance and consistent results

− EXP, LOG, SQRT, INVSQRT, SIN, COS available now, others in
development

 Available as
− Altera Floating point MegaFunctions
− Floating Point block library in DSP Builder model-based design tool

 Currently: separate blocks – α demonstrator
 Future: Polymorphic with fixed point equivalents

 Also higher-level IP: e.g. Matrix Inversion, Matrix Multiply

M
at

he
m

at
ic

al

Fu
nc

tio
ns

:

C
 M

A
TH

.H
 li

br
ar

y
el

em
en

ts

Fl
oa

tin
g

Fi

xe
d

po
in

t

 Compiled data-path is about 50% the size of
the equivalent core-based design

− DSP resources same
 Latency also 50%
 Corresponding power reduction

− most of the data-path dynamic power
consumption in soft logic, not multipliers

 Allows 100% of a device’s floating point
capability to be used at still run at 250MHz

 Abstracted data-path design in DSPB
 DSP Builder floating point blocks

mapped to FPC blocks
 FPC restructures data-path to avoid

overflows and balances it
 FPC optimizations applied

independently of DSP Builder fixed-
point optimizations

4x4 High Speed Cholesky
 Design Brief: High performance, low

cost
− 15M Matrixes/s

 Result:
− 20M Matrixes/s SIII
− 5K ALUTs, 70 18x18 multipliers
− Not only faster/cheaper than

processor alternative, but a fraction of
the power consumption

7,9343065,3842,244293 MHz373,1731614125625,63664(128x128)x(128x128)

5,0233062,6042,112292 MHz181,33384112813,15432(64x64)x(64x64)

5,8583003,4482,110291 MHz182,153813712814,25732(36x448)x(448x36)

4,1653001,8212,045291 MHz91,102477647,88216(36x224)x(224x36)

3,3343001,0632,008291 MHz4576243324,6048(36x112)x(112x36)

TotalI/ODynamicStaticMemory
(Kbits)

M144KM9K18x18
mults

Adaptive
logic

modules
(ALMs)

Power (mW)Performance
(Stratix® IV

FPGA)
GFLOPS

Logic usageVector
size

Matrix
multiply core
examples

Matrix Operators 3–7 GFLOPs/Watt—Single Precision

Parameterizable Cholesky Decomposition
 100% multiplier usage with fraction of logic usage
 Can fill the device with floating point operations and still

achieve pushbutton fit
 300 ALUT / 400 register per operator pair

− Less than half of core methodology

5305780040500Total

181800500Root

5125600040000Vector128x128

2743080021500Total

181800500Root

2562900021000Vector64x64

146218009500Total

181800500Root

128200009000Vector32x32

5076002900Total

181800500Root

3258002400Vector8x8

18x18RegisterALUTCoreMatrix Size

Compiler vs. Cores

Fused data-path optimizations typically achieve 50% reduction in soft
logic & latency - allowing 100% utilization of a device’s floating point

capability at fixed-point speeds

Remove
Normalization

Do not apply special and
error conditions here

Slightly larger,
wider operands

True floating
mantissa,
not just [1,2)

De-normalize

Normalize

Develop & design
schematically with

primitive, math.h & core
functions; in fixed and
floating point domains

Tool generates integrated
and optimized high-

performance HDL on
each simulation

Tool applies global data-
path optimizations to

floating point domains
and many fixed-point
domain optimizations

FPC Adder/Subtractor core implementation FPC Inter-operator redundancy

 Set up and solve linear
programming problems for
scheduling and optimal
pipelining for target fmax

 Optimize adder trees
 Optimize DSP block use
 Optimize memory block use

where access is scheduled
(e.g. FIRs)

 Swap arithmetic expressions
for identical, lower resource
equivalents

 Duplicate code removal
 Time-Division Multiplexing
 Threshold trade-offs
 CSD constant multipliers
 …

Fixed point domain optimizations

(currently separate)

Floating Point Model-Based Design

1

2

3

