
Examples: Floating Point IP using FPC Altera FPGAs deliver:
 A powerful mix of fixed and floating point performance
 Extensive hard DSP capabilities

− IEEE754 single and double precision specifically supported
 100s 36x36 multipliers
 ~100 54x54 multipliers

 Superior computational density per Watt than other solutions
− In a recent National Science Foundation benchmark, a Stratix® IV

FPGA delivered 171 GFLOPS, and was the clear overall leader in
highest GFLOPs/Watt.

 Sustained peak performance

Matrix Multiplier Core
 Feed forward architecture

− Rows and columns blocked
− Partial results cached and process in

secondary pipe
 Extensible and parameterizable

− Single and double precision, real and
complex numbers

− Matrix dimensions
− Area, performance, resource balancing

 Memory depth and bandwidth
 Dot product to matrix dimension ratio

41600 (sp) / 48000 (dp) 20681 (sp) / 26004 (dp) 283 21457 (sp) / 27346 (dp) 64x64

7800 (sp) / 9000 (dp) 4587 (sp) / 7855 (dp) 75 5197 (sp) / 8652 (dp)12x12

Core LogicVector LogicDSPLogicMatrix Size
 Vector Logic:

− compiled data-path
 Logic:

− compiled data-path +
application

 Core Logic:
− equivalent data-path

constructed from discrete
cores

Devices
 Floating Point density largely determined by hard multiplier density

− Altera Multipliers efficiently support floating point mantissa sizes

X X X X

Σ
X X X X

Σ
X X X X

Σ

Σ
AC[36:1] (AD+BC)[54:1] BD[72:1]

X X X X

Σ
Single Precision
Single Extended
Precision

Double Precision

Four 18x18 fixed point
multipliers seamlessly
blended to make a 36x36
multiplier - completely in hard
logic DSP Block

Single soft logic adder required to make
a 54x54 multiplier, 2½ DSP Blocks

Tools: Floating Point Compiler (FPC)
 Conventional Wisdom : IEEE754 system level design too complex for FPGAs

− Floating Point core based design requires more soft logic than a fixed point FPGA
supports

 But IEEE754 data-path inefficient: functional redundancy between operators
− Required for processors – unlimited operation combinations

 Arithmetic unit requires all inputs and outputs to be of a known format
− Not required for data-path – a priori knowledge of inter-operator

relationships
 Data-path unit requires all inputs and outputs to be IEEE754 format
 Internal format only has to guarantee that casting to and from IEEE754 is correct

 Build an FPC tool that exploits a priori knowledge of inter-operator
relationships & has freedom to apply data-path level optimizations

Tools: DSP Builder Advanced / FPC Integration

Fixed Point domain:
 Automatic pipelining to meet required Fmax

 Similar performance as optimized HDL
 Easy timing closure - fewer iterations

Floating Point domain:
 Apply Floating Point Compiler fused
 data-path optimizations

Effortless FPGA Implementation Fast Design Space Exploration
Integrated design, simulation and generation
Fast multi-channel design implementation
Automatic generation of control plane logic
Efficient pipelining for multi-channel data paths
Driven by system level parameters
Effortless FPGA device family retargeting

 Example: LU Matrix
Decomposition

Cores
 Optimized ‘MATH.H’ function library

− Multiplier-based algorithms give low latency, low power, high
performance and consistent results

− EXP, LOG, SQRT, INVSQRT, SIN, COS available now, others in
development

 Available as
− Altera Floating point MegaFunctions
− Floating Point block library in DSP Builder model-based design tool

 Currently: separate blocks – α demonstrator
 Future: Polymorphic with fixed point equivalents

 Also higher-level IP: e.g. Matrix Inversion, Matrix Multiply

M
at

he
m

at
ic

al

Fu
nc

tio
ns

:

C
 M

A
TH

.H
 li

br
ar

y
el

em
en

ts

Fl
oa

tin
g




Fi

xe
d

po
in

t

 Compiled data-path is about 50% the size of
the equivalent core-based design

− DSP resources same
 Latency also 50%
 Corresponding power reduction

− most of the data-path dynamic power
consumption in soft logic, not multipliers

 Allows 100% of a device’s floating point
capability to be used at still run at 250MHz

 Abstracted data-path design in DSPB
 DSP Builder floating point blocks

mapped to FPC blocks
 FPC restructures data-path to avoid

overflows and balances it
 FPC optimizations applied

independently of DSP Builder fixed-
point optimizations

4x4 High Speed Cholesky
 Design Brief: High performance, low

cost
− 15M Matrixes/s

 Result:
− 20M Matrixes/s SIII
− 5K ALUTs, 70 18x18 multipliers
− Not only faster/cheaper than

processor alternative, but a fraction of
the power consumption

7,9343065,3842,244293 MHz373,1731614125625,63664(128x128)x(128x128)

5,0233062,6042,112292 MHz181,33384112813,15432(64x64)x(64x64)

5,8583003,4482,110291 MHz182,153813712814,25732(36x448)x(448x36)

4,1653001,8212,045291 MHz91,102477647,88216(36x224)x(224x36)

3,3343001,0632,008291 MHz4576243324,6048(36x112)x(112x36)

TotalI/ODynamicStaticMemory
(Kbits)

M144KM9K18x18
mults

Adaptive
logic

modules
(ALMs)

Power (mW)Performance
(Stratix® IV

FPGA)
GFLOPS

Logic usageVector
size

Matrix
multiply core
examples

Matrix Operators 3–7 GFLOPs/Watt—Single Precision

Parameterizable Cholesky Decomposition
 100% multiplier usage with fraction of logic usage
 Can fill the device with floating point operations and still

achieve pushbutton fit
 300 ALUT / 400 register per operator pair

− Less than half of core methodology

5305780040500Total

181800500Root

5125600040000Vector128x128

2743080021500Total

181800500Root

2562900021000Vector64x64

146218009500Total

181800500Root

128200009000Vector32x32

5076002900Total

181800500Root

3258002400Vector8x8

18x18RegisterALUTCoreMatrix Size

Compiler vs. Cores

Fused data-path optimizations typically achieve 50% reduction in soft
logic & latency - allowing 100% utilization of a device’s floating point

capability at fixed-point speeds

Remove
Normalization

Do not apply special and
error conditions here

Slightly larger,
wider operands

True floating
mantissa,
not just [1,2)

De-normalize

Normalize

Develop & design
schematically with

primitive, math.h & core
functions; in fixed and
floating point domains

Tool generates integrated
and optimized high-

performance HDL on
each simulation

Tool applies global data-
path optimizations to

floating point domains
and many fixed-point
domain optimizations

FPC Adder/Subtractor core implementation FPC Inter-operator redundancy

 Set up and solve linear
programming problems for
scheduling and optimal
pipelining for target fmax

 Optimize adder trees
 Optimize DSP block use
 Optimize memory block use

where access is scheduled
(e.g. FIRs)

 Swap arithmetic expressions
for identical, lower resource
equivalents

 Duplicate code removal
 Time-Division Multiplexing
 Threshold trade-offs
 CSD constant multipliers
 …

Fixed point domain optimizations

(currently separate)

Floating Point Model-Based Design

1

2

3

