
Floating Point Synthesis From Model-Based Design
Mark Jervis, Martin Langhammer, Graham Griffiths

mjervis@altera.com, mlangham@altera.com, ggriffit@altera.com
Altera Europe

Holmers Farm Way
High Wycombe

Bucks HP12 4XF

Introduction
Model-based design tools such as DSP Builder [1] now
enable you to follow a software-based design flow while
targeting FPGAs. DSP Builder adds specialized Simulink
libraries (‘block-sets’) to the MATLAB design and
simulation environment that allow you to implement DSP
designs quickly and easily. The block-set is based on a high
level synthesis technology that optimizes the high level,
untimed net-list entered as a schematic into low level,
pipelined hardware targeted to the chosen Altera FPGA
device, clock rate and data sample rate. The hardware is
written out as plain text VHDL, along with scripts that
integrate with the Quartus II software and the ModelSim
simulator. The combination of these features allows you to
create a design without needing detailed device knowledge,
and generates a high quality implementation that runs on a
variety of FPGA families with different hardware
architectures. By specifying the desired clock frequency,
the tool solves timing closure issues by generating register
transfer level (RTL) code that is automatically pipelined.
To date, this design flow has been restricted to fixed-point
data representations.

Floating point system level design has traditionally been
very difficult to realize on FPGAs, due to limitations in
routing architectures. Recently, a new method of fused data
path synthesis [2] has been introduced for FPGAs, allowing
the implementation of data paths with hundreds of floating
point operators. System speeds of 300 MHz for single
precision, and 225 MHz for double precision are possible
through a push-button flow. By combining the Floating
Point Compiler with the above model-based design tool we
enable high-level floating point synthesis from model-based
design.

DSP Builder
The high-level model-based design approach adopted in
DSP Builder allows the user to specify their algorithm
without having to account explicitly for delays, or the
particular architectural features of the underlying FPGA
components. Figure 1 below shows such a schematic for an
infinite impulse response (IIR) filter. A (valid, channel,
data) protocol is used throughout, which allows
synchronisation of such subsystems without cycle counting.
This allows the tool to pipeline the system as necessary to
reach the target clock frequency without altering the
algorithm.

At the same time features like data-type propagation make
the creation of such schematic designs quick and simple to
modify.

Figure 1: DSP Builder schematic design of an IIR filter.

Within the tool, the schematic is mapped to a data flow
graph (DFG). The data flow graph is realised as a net-list of
basic functional units. These functional units have a direct
RTL implementation. One Simulink block may map to 0 (in
the case of simple wiring), 1 or many functional units.

Since the representation has no set latency constraint, we
are free to apply optimisation transforms both within and
across groups of functional units that alter latency, provided
it is done consistently. Maintaining a balance of latencies
while pipelining to achieve a clock rate target can be
framed as a linear programming problem (LPP) and solved
with a standard LPP solver, such as SYMPHONY.

Optimizations across or on groups of functional units
include reorganization of adder trees, bringing adder tree
stages following multipliers into DSP blocks, splitting and
pipelining adder chains, duplicate code removal, canonical
signed digit representation of constant multipliers, and
automated time-division multiplexing.

FPC Integration
FPC integration in DSP Builder brings a model-based
design front end to the FPC technology outlined in [2]. It
also brings other benefits of a shared environment with the
existing tool; simulation with automated 3rd-party
verification, integrated HDL with other DSP Builder
blocks, memory-mapped interfaces, hardware-in-the-loop
simulation and Quartus project and ModelSim script
generation.

The FPC is initially integrated as a separate library of
primitive blocks.

Figure 2: DSP Builder Floating Point Primitive Library.

Currently supported functions are multiply, add, subtract,
divide, inverse (1/x), square root, inverse square root,
exponent (ex), natural logarithm, (ln(x)), load exponent, x2n
and absolute value. These are effectively C MATH.H
library elements, which map to multiplier based
architectures where appropriate.

In addition, two other blocks mark the separation of the
fixed- and floating point domains within the system. These
follow the same (valid, channel, data) protocol used
throughout DSP Builder. They generate floating point
conversion RTL code and in simulation correct for latencies
added in hardware, such that at a subsystem level the design
simulates with cycle accuracy.

Designs for the floating point part of the design are created
schematically with blocks from the floating point library.
The boundary blocks provide a conversion between the
fixed and floating point domains where necessary, such that
a mixed system can be constructed seamlessly.

Figure 3: Simple Floating Point Subsystem.

The following data path was designed for a LU
decomposition function using Crout’s algorithm. The
functional blocks in DSPB have been mapped to FPC
blocks. The FPC has restructured the data path to avoid
overflows and balanced it locally, which is done
independently of the DSPB optimizations.

Figure 4: LU Decomposition Data path.

The estimated core logic figure is based on a standalone
single precision multiplier and adder/subtractor pair
(requiring approximately 650 LUTs and 750 registers [3])
implementation of the dot product portion of the data path.
The vector logic also includes the divider; savings in excess
of 50% logic area are realized.

Table 1: LU Data path Resource Requirements

Matrix
Size

Logic DSP Vector
Logic

Core Logic

12x12 5197/8652 75 4587/7855 7800/9000
64x64 21457/27346 283 20681/26004 41600/48000

Roadmap
Currently the set of optimizations employed by the FPC to
obtain the sustained system performance while minimising
the hardware resources used is applied separately to those
optimizations applied by DSP Builder. Future versions
could integrate these optimizations: first applying the DFG
transformations to build and apply floating-point specific
transforms; then on this transformed DFG, applying further
DSP Builder optimizations transforms, such as time-
division multiplexing, and duplicate code removal. Blocks
could then be mixed within subsystems, and in fact the
block libraries largely combined wit the type of generated
hardware just dependent on the data type chosen in the
schematic.

References
[1] Altera Corporation, “DSP Builder User Guide, 2009”

[2] M. Langhammer, “Floating point data path synthesis
for FPGAs”, Proc. Field Programmable Logic Conf.,
September 2008, pp. 355-360

[3] Altera Corporation, “Altera Floating Point Megafunctions”,
www. altera.com/products/ip/dsp/arithmetic/m-alt-
float-point.html

http://altera.com/products/ip/dsp/arithmetic/m-alt-float-point.html
http://altera.com/products/ip/dsp/arithmetic/m-alt-float-point.html

