
GPU VSIPL:
Core and Beyond

Andrew Kerr1, Dan Campbell2, and Mark Richards1

1Georgia Institute of Technology
2Georgia Tech Research Institute



Goal
• An application development environment for 

embedded high performance computing that achieves
– Portability: same code usable with different processors, 

processor generations, and vendors
– Productivity: disciplined programming model, leverage 

highly optimized libraries for signal processing+linear algebra
– Performance: employ highly advanced processors,

~1 TFLOPS

Approach
• Adopt the VSIPL API for open standard portability 

and productivity
• Develop a state-of-the-art GPU-VSIPL library to 

leverage CUDA-enabled GPU performance



GPU-VSIPL Functional Coverage
• What’s covered from VSIPL Core

– Data Types
• real, complex, integer, boolean, index

– View Types
• Matrix, vector

– Element-wise Operators
• arithmetic, trigonometric, transcendental, 

scatter/gather, logical, and comparison
– Signal Processing

• FFT (in-place, out-of-place, batched)
• Fast FIR filter, window creation,

1D correlation
• Random number generation, histogram

– Linear Algebra
• generalized matrix product
• QR decomposition, least-squares solver

• What’s Not (yet)
– Linear Algebra

• LU, Toeplitz, least-squares solvers
• What’s Added Beyond VSIPL Core

– Scalar and matrix versions of element-wise 
vector operators

– Matrix utility functions

VSIPL API

Core Profile

GPU VSIPL

Core Lite
Profile



Performance Examples:
Signal Processing

1D FFT, In-Place 1D Correlation



Performance Examples:
Linear Algebra

Matrix-Vector Product QR Decomposition


