
GPU VSIPL: Core and Beyond
Andrew Kerr, Dan Campbell, Mark Richards

Georgia Institute of Technology, Georgia Tech Research Institute
arkerr@gatech.edu, dan.campbell@gtri.gatech.edu, mark.richards@ece.gatech.edu

Abstract—GPU VSIPL1 is an implementation of the Vector
Signal Image Processing Library (VSIPL) and provides a library-
based solution to developing GPU-accelerated numerical appli-
cations. GPU VSIPL now supports much of the VSIPL Core
Profile as well as element-wise matrix operators corresponding
to required vector operators. This is nearly a five-fold increase
in function count since GPU VSIPL was first introduced and
includes numerous high-level numerical procedures. GPU VSIPL
is implemented by optimized kernels written in the CUDA
programming language. It provides support for real and complex
matrix and vector operations; signal processing operations such
as FIR, FFT, correlation, and histogram; and linear algebra
operations such as matrix product and QR decomposition. GPU
VSIPL achieves performance comparable to CUBLAS without
encumbering the developer with CUDA-specific function calls
and is link-compatible with existing VSIPL applications.

Introduction
High-performance architectures such as graphics processing

units (GPUs) require a specialized approach to programming
that explicitly exposes data parallelism within kernels. Lan-
guages such as NVIDIA’s CUDA [1] expose thread and mem-
ory hierarchies to the programmer enabling efficient utilization
of the hardware implementing the CUDA execution model,
yet CUDA programs are not easily portable to architectures
beyond NVIDIA GPUs. The development of efficient CUDA
kernels is a time-consuming process requiring intimate knowl-
edge of the underlying architecture.

Vector Signal Image Processing Library (VSIPL) [2] is
a signal processing and linear algebra API resulting from
a DARPA initiative to provide high-performance numerical
processing while maintaining platform independence over a
wide range of system architectures. Its abstractions for weakly
consistent memory are well-adapted to systems containing
GPUs in which transfer costs via the PCI Express bus need
not be incurred between every function call.

In this paper, we discuss developmental progress of GPU
VSIPL [3], an implementation of the VSIPL API. We present
features added to GPU VSIPL since its introduction [4] and
the measured performance of several high-level operations,
relative to CUBLAS [5] where applicable. Additionally, we
present the impact of several optimization techniques relevant
to GPU computing.

Background
VSIPL explicitly decouples numerical elements from math-

ematical objects composed of this data. A block is a contiguous
array of real or complex scalar elements, integer or floating

1This work was supported in part by DARPA and AFRL under contracts
FA8750-06-1-0012 and FA8650-07-C-7724. The opinions expressed are those
of the authors.

point, that may be managed by the VSIPL implementation.
Application data may be bound to a VSIPL block which
may make an internal copy with arbitrary structure. The
application must admit the block to VSIPL before performing
VSIPL operations on this data thereby enabling GPU VSIPL
to synchronize blocks in the GPU’s memory.

The VSIPL API contains thousands of functions, many of
which implement highly-specialized operations only needed
by a small subset of potential users. The VSIPL specification
includes two formally defined subsets of functions in the
VSIPL API to facilitate the production of VSIPL imple-
mentations requiring only the most common functionality.
The smallest of these formal subsets is known as VSIPL
Core Lite [6]. It includes floating-point vector operations,
FIR filtering, and FFT. VSIPL Core [7] is a superset of
VSIPL Core Lite and includes matrix views, linear algebra
operators, 1-D correlation, and matrix decompositions. VSIPL
implementations are link-compatible with C.

GPU VSIPL
GPU VSIPL implements nearly all of VSIPL Core profile

with the exception of LU, Cholesky, and several special
solvers. GPU VSIPL does include, however, VSIPL functions
not required in Core profile. These are element-wise matrix op-
erators corresponding to the vector operators specified by Core
profile. Table I characterizes functionality supported by GPU
VSIPL. A complete list of supported functions may be found
on the GPU VSIPL website http://gpu-vsipl.gtri.gatech.edu
as well as the list of functions defined in VSIPL Core that
are not supported at this time. GPU VSIPL passes all tests
in the VSIPL Core Lite Test Suite as well as additional
testing of VSIPL Core functions on matrix views with arbitrary
strides, offsets, and padding. GPU VSIPL is currently available
as a non-redistributable static library compiled for Linux,
Windows, and Mac OS X. More information is available on
the GPU VSIPL website.

TABLE I: GPU VSIPL Functionality Summary
GPU VSIPL

Data types real, complex, integer, boolean, index
View types matrix, vector
Element-wise operators arithmetic, trigonometric, transcendental,

scatter and gather, comparators
Signal processing FFT (in-place, out-of-place, batched),

1D correlation, window creation, FIR filter,
random number generation (uniform, normal),
histogram

Linear algebra generalized matrix product,
QR decomposition, least-squares solver



Optimization Techniques
GPU VSIPL is a performance-oriented library, and efficient

mapping of kernels to the architecture has been of paramount
importance. GPU VSIPL kernels that exhibit high utilization
of GPUs have the following characteristics: high-intensity of
floating-point instructions in the inner loop, coalesced global
memory accesses, efficient data sharing among threads of the
kernel, minimal divergent control flow, and synchronizations
placed to achieve high SIMD utilization. Vector and matrix
element-wise operators tend to be memory bound with ineffi-
cient computations effectively hidden by transfers to global
memory. Higher-level linear algebra operators such as ma-
trix product can be implemented by compute-bound kernels.
Matrix product is implemented by a “fat kernel” with two
uniform control paths depending on whether the CUDA block
corresponds to elements on the fringe of the matrix requiring
fine-grain guard conditionals or the core of the matrix in which
guards are not required and loops may be heavily unrolled.
GPU VSIPL kernels map elements of matrix views to threads
with IDs equal to their word offset from 256-byte boundaries
ensuring coalescable transactions to global memory.

QR decomposition is an O(N3) computation fundamental
to many linear algebra and signal processing algorithms.
Householder reflections are a common parallelizable method
for QR but depend heavily on matrix-vector products which
are typically memory-bound on high-performance architec-
tures such as GPUs. In [8], we present a CUDA imple-
mentation of a blocked Householder QR algorithm in which
Householder reflections are applied in batches by matrix
product operations. This implementation of QR decomposition
has been integrated into GPU VSIPL.

Performance
In this section, we present measured performance of GPU

VSIPL’s support for generalized matrix-vector product and QR
decomposition. Performance results for element-wise opera-
tors are presented in [4]. These measurements have been per-
formed on a test platform with a 2.83 GHz Intel Core2 “Pen-
ryn” CPU running Linux x86-64 with both a GeForce GTX280
and a GeForce 9800 GX2 GPU. Figure 1 illustrates the per-
formance of GPU VSIPL’s matrix-vector product in GFLOP/s.
As a memory bound operation, matrix-vector product is lim-
ited by the bandwidth of the target device. GPU VSIPL’s
matrix-vector product achieves a maximum of 97% of the
theoretical maximum performance on the GeForce GTX280.
This function has less overhead than cublasSgemv from
the CUBLAS library as illustrated by its rapid approach to
the theoretical limit. Figure 2 illustrates the performance of
QR decomposition on real data in terms of GFLOP/s for
rectangular matrices. Performance measurements include calls
to vsip_qrdprod_f which are themselves compute bound
and achieve approximately 300 GFLOP/s sustained across
matrices with 2048 rows or more. GPU VSIPL’s QR exhibits a
peak performance of 142 GFLOP/s, more than a 4.5× speedup
over a single-threaded call to Intel’s Math Kernel Library
(MKL) and a 20% speedup over MKL launched with four
threads.

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

70
Matrix−vector product

Matrix rows (m)

G
F

LO
P

/s

Theoretical GTX280
vsip_mvprod_f GTX280
cublasSgemv GTX280
Theoretical 9800GX2
vsip_mvprod_f 9800
cublasSgemv 9800

Figure 1: Performance of GPU VSIPL’s vsip mvprod f().

0 2000 4000 6000 8000 10000
0

50

100

150

Matrix rows

G
F

LO
P

/s
GTX 280
9800 GX2

Figure 2: Performance of GPU VSIPL’s QR decomposition.

Conclusions
GPUs are specialized high-performance architectures com-

moditized by the 3D gaming market. Their programming
model is also specialized resulting in increased development
costs and sacrificing portability to an extent. GPU VSIPL
is a high-performance library-based approach to developing
applications that are accelerated by GPUs but decoupled from
its programming model. GPU VSIPL achieves performance
comparable to NVIDIA’s CUBLAS library yet includes nu-
merous signal processing operations making it a worthwhile
choice for GPU-accelerated application development.

References
[1] NVIDIA, NVIDIA CUDA Compute Unified Device Architecture, 2nd ed.,

NVIDIA Corporation, Santa Clara, California, October 2008.
[2] D. Schwartz, R. Judd, W. Harrod, and D. Manley, “VSIPL 1.3 API,”

VSIPL Forum, Tech. Rep., 2008.
[3] Georgia Institute of Technology and Georgia Tech Research Institute,

“GPU VSIPL,” http://gpu-vsipl.gtri.gatech.edu.
[4] A. Kerr, D. Campbell, and M. Richards, “GPU VSIPL: High-Performance

VSIPL Implementation for GPUs,” in HPEC 2008. Lexington, MA,
USA: MIT Lincoln Laboratory, 2008, p. 123.

[5] NVIDIA, NVIDIA CUDA CUBLAS Library, 2nd ed., NVIDIA Corpora-
tion, Santa Clara, California, September 2008.

[6] D. Schwartz, R. Judd, W. Harrod, and D. Manley, “VSIPL Core Lite
Profile,” VSIPL Forum, Tech. Rep., 2000.

[7] ——, “VSIPL Core Profile,” VSIPL Forum, Tech. Rep., 2000.
[8] A. Kerr, D. Campbell, and M. Richards, “QR decomposition on GPUs,” in

GPGPU-2: Proceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units. New York, NY, USA: ACM, 2009, pp.
71–78.


