The “State” and “Future” of
Middleware for HPEC

Anthony Skjellum
RunTime Computing Solutions, LLC

&
University of Alabama at Birmingham

HPEC 2009



Overview

Context
Tradeoffs
Standards
Futures
Summary



COTS Computing -> COTS
APIls and Middleware

o With COTS computing, the combined
goals for

— Performance
— Portabllity
— Productivity

* And lack of vendor “lock” has motivated
use of High Performance Middleware




High Performance Computing
Meets Software Engineering

Kinds of software maintenance
— Perfective

— Adaptive

— Corrective

Standards allow for adaptive maintenance, including
porting to new platforms

Standards “allow” vendors to deliver performance
and productivity in narrow areas without “undoing”
COTS; compete within confines of interfaces

Standards remove need for each development
project to make a layer of adaptive middleware

Porting to new platforms important in COTS world



Tradeoffs

Layers can’t add performance, unless they
raise the level of specification and granularity
of operations and allow compile-time and/or
runtime-optimization

More lines of standard code vs. concise
unportable fast vendor specs?

Small reductions of achievable performance
can yield huge in portability and productivity

There Is no guarantee that users use
standards or vendor-specific codes optimally



Tradeoffs

 Middleware standards are specified as if they
are libraries and API calls

 Middleware standards are implemented as
libraries with API calls

« Middleware standards could be implemented
as domain-specific languages and/or
compiler-based notations, with lower cost of
portability (but implementations more
expensive)




Parallel Compilers for HPEC

* There Is no effective automatic parallel
compilation... no change in sight

 OpenMP directives helpful but not a
general solution for thread
parallelization (e.g., iIn GCC 4.x)

 High Performance Middleware still has
to “pull its weight”



Standards that emerged In

HPEC

 Drawing on HPC
— MPI
— MPI/RT (with DARPA support)

e Unique to HPEC
— VSIPL

— DRI
— VSIPL++

« CORBA



Two classes of adoption

 Significant

— VSIPL

— MPI

— VSIPL++ (which also leverages DRI)
« Not significant

— MPI/RT

— DRI (although ideas used elsewhere)

« CORBA successfully used, but not for HPC
purposes usually, rather distributed
computing; so important, but “adjacent”



Why MPI is successful

Successful in HPC space

— revolutionized software development in
DOD/DOE/academia

— Even limited commercial application space

Widely implemented
— free versions
— Commercial productions

Widely available training in colleges
Easy to write a program in MPI

Matches the CSP model of embedded
multicomputers

Developers generally use MPI 1.x subset only
In HPEC space (standardized in 1994)



Why VSIPL Successful

Close mapping to “FPS library” notation from
the past

Removes vendor lock from math functions
(e.g., non-portable functions)

Eliminates “accidental complexity” in apps

Math functions are hard to implement on
modern processors

ADT abstractions (object based) useful
Very good performance in practice
Not hard to use



Why VSIPL++ Is Successful

For those that use C++
— More performance possible
— Less lines of code possible

DRI concepts included
Parallel abstraction included

Acceptance of the parallel model, C++, and
template meta programming is a big leap for
some developers/programs, but is worthwhile



DRI - Still Important

DARPA Data Reorganization Initiative

Works to replace 1 function family in MPI -
Alltoall

Key HPEC abstraction (Corner Turn)

All the best ideas for Corner Turn in the field
put in the standard

Created at end of “DARPA Push” in the
area... no customer demand; picked up In
VSIPL++

Best ideas already in vendor libraries like
PAS

Next steps: Try to get into MPI-3 standard



MPI/RT Not Successful

Easy to implement without QoS
QoS needed OS support (lacking)
Hard to write programs in MPI/RT

Addressed performance-portability issues in MPI-1.1
area, but not compelling enough

Implementations done on CSPI, Mercury, Sky?,
Radstone, Linux Cluster... but did not reach critical
mass of customer demand/acceptance

MPI/RT Concepts remain important for future
middleware standardization

Huge effort invested, no disruptive change in
development



|. Performance-Productivity-
Portability Space

Goal is to tradeoff

You can’t have it all
— Choose at Most 1
— Choose at most 2

Those tradeoffs are different as you move to
different COTS architectures

— Tuning always needed
Performance-Portability in Middleware helps

Productivity Matters too, but often sacrificed
to get the other two factors



Price of Portabllity

e Due to Richard Games (Ken Cain involved
too)

e Classical example:
— MPI1_Alltoall* function
— Much slower than hand coded

— Just proves that MPI specified this function about
as suboptimally as it could have

— Side effect: motivated DRI
« Better examples:

— MPI Send/Receive vs. low level vendor DMA

— VSIPL vs. chained optimized pulse compression in
vendor-specific math API



Price of Productivity

* Productivity doesn’t have to lower
Performance (e.g., meta programming)

e But It often does

* Productivity enhancing interfaces in
HPEC... the key one Is VSIPL++



Price of Resilience (A 4th
Dimension)

All standards discussed so far lack a fault
tolerant model

Space-based and even terrestrial embedded
multicomputers have fault scenarios

No significant effort to refactor successful
APls done yet

HPEC approaches to fault awareness needed
Aspect-oriented type approaches possible



ll. Investment in Further
Standardization

There is very limited current investment in these
areas

MPI-3 - not working on performance issues still
bogging down MPI-1.x functions used in HPEC [NSF
funding MPI-3 meeting attendance]

VSIPL - dormant; latest standard efforts were not key
to addressing more performance or more productivity

No significant investments from DARPA now...
DARPA and/or NSF need to drive

Actually, there was always limited investment :-) it is
just more limited now



Ill. Broader Adoption

Must be driven by ultimate customers (e.g.,
USN)... if not required by customer, why will
primes or other developers use standards?

Legacy codes that mix standards and vendor
APIls are still vendor locked

Economic models that show value must be
enhanced

Standards must be enhanced for newer,
more complex heterogeneous architectures

Standards must be implemented well on
target platforms [vendors fully embrace]



V. Newer Architectures

Heterogeneous
Multithreaded / multicore
GPU + CPU

CPU + FPGA

Balance changes in communication, computation,
and /O

Need for better overlap

All mean that the programming models of existing
standards have to be augmented or revamped

Commercial standards like OpenCL and CUDA... we
have to interoperate with these



Summary

e Overall, middleware, and principally MPI and
VSIPL, have driven up the capability of defense
and other HPEC applications to be performance-
oriented and portable at the same time.
Significant legacy applications have been
developed,

* These standards have proven useful.
e Others as well (e.g., POSIX)



Summary

How do we get more benefit from middleware?

Where do we Invest, what private and government
stakeholders make those investments, when, and
how?

Investment long overdue and can be extremely
beneficial, and even enhance the competitiveness
of HPEC systems vendors.

Leverage from HPC?

Does a lean budget drive more interest or less?



