
Th “St t ” d “F t ” fThe “State” and “Future” of
Middleware for HPECdd e a e o C

Anthony Skjellum
RunTime Computing Solutions, LLC

&&
University of Alabama at Birmingham

HPEC 2009

Overview

• Context
• TradeoffsTradeoffs
• Standards

F t• Futures
• Summary

COTS Computing -> COTSCOTS Computing > COTS
APIs and Middleware

• With COTS computing, the combined
goals forg
– Performance
– PortabilityPortability
– Productivity

• And lack of vendor “lock” has motivated• And lack of vendor lock has motivated
use of High Performance Middleware

High Performance ComputingHigh Performance Computing
Meets Software Engineering

• Kinds of software maintenance
– Perfective
– AdaptiveAdaptive
– Corrective

• Standards allow for adaptive maintenance, including
porting to new platformsporting to new platforms

• Standards “allow” vendors to deliver performance
and productivity in narrow areas without “undoing”
COTS t ithi fi f i t fCOTS; compete within confines of interfaces

• Standards remove need for each development
project to make a layer of adaptive middlewarep j y p

• Porting to new platforms important in COTS world

Tradeoffs

• Layers can’t add performance, unless they
raise the level of specification and granularity
of operations and allow compile time and/orof operations and allow compile-time and/or
runtime-optimization

• More lines of standard code vs. conciseMore lines of standard code vs. concise
unportable fast vendor specs?

• Small reductions of achievable performance
can yield huge in portability and productivity

• There is no guarantee that users use
standards or vendor specific codes optimallystandards or vendor-specific codes optimally

Tradeoffs

• Middleware standards are specified as if they
are libraries and API calls

• Middleware standards are implemented as
libraries with API calls

• Middleware standards could be implemented
as domain-specific languages and/or

il b d t ti ith l t fcompiler-based notations, with lower cost of
portability (but implementations more
expensive)expensive)

Parallel Compilers for HPEC

• There is no effective automatic parallel
compilation… no change in sightp g g

• OpenMP directives helpful but not a
general solution for threadgeneral solution for thread
parallelization (e.g., in GCC 4.x)

• High Performance Middleware still has• High Performance Middleware still has
to “pull its weight”

Standards that emerged inStandards that emerged in
HPEC

• Drawing on HPC
– MPI
– MPI/RT (with DARPA support)

• Unique to HPECq
– VSIPL
– DRI
– VSIPL++

• CORBA

Two classes of adoption

• Significant
– VSIPL

MPI– MPI
– VSIPL++ (which also leverages DRI)

• Not significant• Not significant
– MPI/RT
– DRI (although ideas used elsewhere)

• CORBA successfully used, but not for HPC
purposes usually, rather distributed
computing; so important but “adjacent”computing; so important, but adjacent

Why MPI is successfuly
• Successful in HPC space

revolutionized software development in– revolutionized software development in
DOD/DOE/academia

– Even limited commercial application space
• Widely implemented

– free versions
Commercial productions– Commercial productions

• Widely available training in colleges
• Easy to write a program in MPI• Easy to write a program in MPI
• Matches the CSP model of embedded

multicomputersp
• Developers generally use MPI 1.x subset only

in HPEC space (standardized in 1994)

Why VSIPL Successful

• Close mapping to “FPS library” notation from
the past
R d l k f th f ti• Removes vendor lock from math functions
(e.g., non-portable functions)

• Eliminates “accidental complexity” in apps• Eliminates accidental complexity in apps
• Math functions are hard to implement on

modern processorsp
• ADT abstractions (object based) useful
• Very good performance in practicey g p p
• Not hard to use

Why VSIPL++ is Successful

• For those that use C++
– More performance possible
– Less lines of code possible

• DRI concepts included
• Parallel abstraction included
• Acceptance of the parallel model, C++, and

template meta programming is a big leap for
some developers/programs, but is worthwhile

DRI - Still ImportantDRI Still Important
• DARPA Data Reorganization Initiative

W k t l 1 f ti f il i MPI• Works to replace 1 function family in MPI -
Alltoall

• Key HPEC abstraction (Corner Turn)• Key HPEC abstraction (Corner Turn)
• All the best ideas for Corner Turn in the field

put in the standardp
• Created at end of “DARPA Push” in the

area… no customer demand; picked up in
VSIPLVSIPL++

• Best ideas already in vendor libraries like
PASPAS

• Next steps: Try to get into MPI-3 standard

MPI/RT Not Successful
• Easy to implement without QoS
• QoS needed OS support (lacking)

Hard to write programs in MPI/RT• Hard to write programs in MPI/RT
• Addressed performance-portability issues in MPI-1.1

area, but not compelling enough
• Implementations done on CSPI, Mercury, Sky?,

Radstone, Linux Cluster… but did not reach critical
mass of customer demand/acceptancep

• MPI/RT Concepts remain important for future
middleware standardization

• Huge effort invested no disruptive change in• Huge effort invested, no disruptive change in
development

I Performance-Productivity-I. Performance Productivity
Portability Space

• Goal is to tradeoff
• You can’t have it all

– Choose at Most 1
– Choose at most 2

• Those tradeoffs are different as you move to• Those tradeoffs are different as you move to
different COTS architectures
– Tuning always neededg y

• Performance-Portability in Middleware helps
• Productivity Matters too, but often sacrificed

to get the other two factors

Price of Portability
D t Ri h d G (K C i i l d• Due to Richard Games (Ken Cain involved
too)

• Classical example:• Classical example:
– MPI_Alltoall* function
– Much slower than hand coded
– Just proves that MPI specified this function about

as suboptimally as it could have
– Side effect: motivated DRI– Side effect: motivated DRI

• Better examples:
– MPI Send/Receive vs. low level vendor DMA
– VSIPL vs. chained optimized pulse compression in

vendor-specific math API

Price of Productivity

• Productivity doesn’t have to lower
Performance (e.g., meta programming)(g , p g g)

• But it often does
• Productivity enhancing interfaces in• Productivity enhancing interfaces in

HPEC… the key one is VSIPL++

Price of Resilience (A 4thPrice of Resilience (A 4th
Dimension)

• All standards discussed so far lack a fault
tolerant model
S b d d t t i l b dd d• Space-based and even terrestrial embedded
multicomputers have fault scenarios

• No significant effort to refactor successful• No significant effort to refactor successful
APIs done yet

• HPEC approaches to fault awareness neededpp
• Aspect-oriented type approaches possible

II Investment in FurtherII. Investment in Further
Standardization

• There is very limited current investment in these
areas

• MPI-3 - not working on performance issues still• MPI-3 - not working on performance issues still
bogging down MPI-1.x functions used in HPEC [NSF
funding MPI-3 meeting attendance]
VSIPL d t l t t t d d ff t t k• VSIPL - dormant; latest standard efforts were not key
to addressing more performance or more productivity

• No significant investments from DARPA now…
DARPA and/or NSF need to drive

• Actually, there was always limited investment :-) it is
just more limited nowj

III. Broader Adoption

• Must be driven by ultimate customers (e.g.,
USN)… if not required by customer, why will
primes or other developers use standards?primes or other developers use standards?

• Legacy codes that mix standards and vendor
APIs are still vendor lockedAPIs are still vendor locked

• Economic models that show value must be
enhanced

• Standards must be enhanced for newer,
more complex heterogeneous architectures
S d d b i l d ll• Standards must be implemented well on
target platforms [vendors fully embrace]

IV. Newer Architectures
• Heterogeneous
• Multithreaded / multicore

GPU + CPU• GPU + CPU
• CPU + FPGA
• Balance changes in communication, computation, g , p ,

and I/O
• Need for better overlap
• All mean that the programming models of existing• All mean that the programming models of existing

standards have to be augmented or revamped
• Commercial standards like OpenCL and CUDA… we

h i i h hhave to interoperate with these

Summary

• Overall, middleware, and principally MPI and
VSIPL, have driven up the capability of defense
and other HPEC applications to be performance-
oriented and portable at the same time.
Significant legac applications ha e beenSignificant legacy applications have been
developed,

h d d h l• These standards have proven useful.

• Others as well (e.g., POSIX)

Summary

• How do we get more benefit from middleware?

• Where do we invest, what private and government, p g
stakeholders make those investments, when, and
how?

• Investment long overdue and can be extremely
beneficial, and even enhance the competitiveness
of HPEC s stems endorsof HPEC systems vendors.

• Leverage from HPC?

• Does a lean budget drive more interest or less?

