
Runtime Verification and Validation
forfor

Multi-Core Based On-Board Computing

Hans P. Zima and Mark L. James

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
{zima mjames}@jpl nasa gov{zima,mjames}@jpl.nasa.gov

High Performance Embedded Computing (HPEC)
Workshop

MIT Lincoln Laboratory, September 23rd, 2009

Contents

1.1. IntroductionIntroduction1.1. IntroductionIntroduction1.1. IntroductionIntroduction

2.2. An Introspection Framework for Fault ToleranceAn Introspection Framework for Fault Tolerance

1.1. IntroductionIntroduction

2.2. An Introspection Framework for Fault ToleranceAn Introspection Framework for Fault Tolerance

3.3. V&V versus IntrospectionV&V versus Introspection

4.4. Automatic Generation of FaultAutomatic Generation of Fault--Tolerant CodeTolerant Code

3.3. V&V versus IntrospectionV&V versus Introspection

4.4. Automatic Generation of FaultAutomatic Generation of Fault--Tolerant CodeTolerant Code

5.5. Concluding RemarksConcluding Remarks5.5. Concluding RemarksConcluding Remarks

The work described in this presentation has been funded by the JPL Research and Technology (R&TD) project
01STCR R.08.023.015 “Introspection Framework for Fault Tolerance in Support of Autonomous Space Systems”

NASA/JPL: Potential Future Missions
Artist Concept

Neptune Triton
Explorer

Mars Sample Return

Europa AstrobiologyTi E lEuropa Europa Astrobiology
Laboratory

Titan ExplorerEuropa
Explorer

New Requirements

Future missions and the limited downlink to

Earth lead to two major new requirements:

1. Autonomy

2. High-Capability On-Board Computing
Missions will require on-board computational power ranging from tens
of Gigaflops to Teraflops.

E i lti t h l i t d t id thi bilitEmerging multi-core technology is expected to provide this capability

Future Multi-Core Architectures:
From 10s to 100s of Processors on a Chip

Tile64 (Tile64 (TileraTilera Corporation, 2007)Corporation, 2007)
0 64 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth

Tile64 (Tile64 (TileraTilera Corporation, 2007)Corporation, 2007)
0 64 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0 170-300mW per core; 600 MHz – 1 GHz
0 192 GOPS (32 bit)—about 10 GOPs/Watt

Maestro (2010/11)Maestro (2010/11)

0 170-300mW per core; 600 MHz – 1 GHz
0 192 GOPS (32 bit)—about 10 GOPs/Watt

Maestro (2010/11)Maestro (2010/11)()()
0 RHBD 7x7 grid SW-compatible version of Tile64 with FP
0 270mW per core; 480 MHz; 70 GOPs; max 28W

KilocoreKilocore 10251025 (Rapport Inc and IBM 2008)(Rapport Inc and IBM 2008)

()()
0 RHBD 7x7 grid SW-compatible version of Tile64 with FP
0 270mW per core; 480 MHz; 70 GOPs; max 28W

KilocoreKilocore 10251025 (Rapport Inc and IBM 2008)(Rapport Inc and IBM 2008)KilocoreKilocore 10251025 (Rapport Inc. and IBM, 2008)(Rapport Inc. and IBM, 2008)
0 Power PC and 1024 8-bit processing elements (125MHz)
0 32X32 “stripes” dedicated to different tasks

KilocoreKilocore 10251025 (Rapport Inc. and IBM, 2008)(Rapport Inc. and IBM, 2008)
0 Power PC and 1024 8-bit processing elements (125MHz)
0 32X32 “stripes” dedicated to different tasks

8080--core research chip from Intel (2011)core research chip from Intel (2011)
0 2D on-chip mesh network for message passing
0 1.01 TF (3.16 GHz); 62W power—16 GOPS/Watt

8080--core research chip from Intel (2011)core research chip from Intel (2011)
0 2D on-chip mesh network for message passing
0 1.01 TF (3.16 GHz); 62W power—16 GOPS/Watt

The issue of dependability, and in particular fault
tolerance, has to be addressed in this new context

Dependability*

Faults

The ability of a computing system to deliver service that can be justifiably trusted

Threats Errors

Failures

Availability

Reliability

Dependability Attributes Safety

Integrity

Maintainability

Means

Fault Prevention

Fault Removal

(F lt P t ti)

*A. Avizienis, J.-C.Laprie, B.Randell: Fundamental Concepts of Dependability. UCLA CSD Report 010028, 2000

Fault Tolerance
(Fault Protection)

Threats: the Fault-Error-Failure Chain

System Boundary
(Service Interface)

Fault Error Error Failureactivation
propagation

propagation
to service
boundary

defect in a system invalid system state

Failure
violation of system

specificationspecification

external fault
(caused by external failure)(caused by external failure)

Means (Fault Protection)

Fault Prevention: Fault Prevention: via via quality control quality control during design and manufacturing during design and manufacturing
of hardware and softwareof hardware and software
Fault Prevention: Fault Prevention: via via quality control quality control during design and manufacturing during design and manufacturing
of hardware and softwareof hardware and software
0structured programming, modularization, information hiding; firewalls
0shielding and radiation hardening
0…

0structured programming, modularization, information hiding; firewalls
0shielding and radiation hardening
0…

Fault Removal: Fault Removal: Verification and Validation (V&V),model checking, etc.Verification and Validation (V&V),model checking, etc.

Fault Tolerance: the ability to preserve the delivery ofFault Tolerance: the ability to preserve the delivery of

Fault Removal: Fault Removal: Verification and Validation (V&V),model checking, etc.Verification and Validation (V&V),model checking, etc.

Fault Tolerance: the ability to preserve the delivery ofFault Tolerance: the ability to preserve the delivery ofFault Tolerance: the ability to preserve the delivery of Fault Tolerance: the ability to preserve the delivery of
correct service (system specification) in the presence of correct service (system specification) in the presence of
active faultsactive faults

Fault Tolerance: the ability to preserve the delivery of Fault Tolerance: the ability to preserve the delivery of
correct service (system specification) in the presence of correct service (system specification) in the presence of
active faultsactive faults
0error detection
0recovery: error handling and fault handling
0fault masking: redundancy-based recovery without explicit error

0error detection
0recovery: error handling and fault handling
0fault masking: redundancy-based recovery without explicit errorfault masking: redundancy based recovery without explicit error

detection (e.g., TMR)
fault masking: redundancy based recovery without explicit error
detection (e.g., TMR)

Fault Tolerance

Fault Error Failureactivation
propagation to

service boundary

fault tolerance

ll d fi delimination of detected errors well-defined
system state

elimination of detected errors

prevention of fault activations

Contents

11 I t d tiI t d ti11 I t d tiI t d ti1.1. IntroductionIntroduction

2.2. An Introspection Framework for Fault ToleranceAn Introspection Framework for Fault Tolerance

1.1. IntroductionIntroduction

2.2. An Introspection Framework for Fault ToleranceAn Introspection Framework for Fault Tolerance

3.3. V&V versus IntrospectionV&V versus Introspection

44 Automatic Generation of FaultAutomatic Generation of Fault Tolerant CodeTolerant Code

3.3. V&V versus IntrospectionV&V versus Introspection

44 Automatic Generation of FaultAutomatic Generation of Fault Tolerant CodeTolerant Code4.4. Automatic Generation of FaultAutomatic Generation of Fault--Tolerant CodeTolerant Code

5.5. Concluding RemarksConcluding Remarks

4.4. Automatic Generation of FaultAutomatic Generation of Fault--Tolerant CodeTolerant Code

5.5. Concluding RemarksConcluding Remarks

I iI iI iI i

A Framework for Introspection

Introspection…Introspection…
provides provides dynamicdynamic monitoring, analysis, and feedback, monitoring, analysis, and feedback,

Introspection…Introspection…
provides provides dynamicdynamic monitoring, analysis, and feedback, monitoring, analysis, and feedback,
enabling system to become selfenabling system to become self--aware and contextaware and context--aware: aware:
0monitoring execution behavior
0reasoning about its internal state

enabling system to become selfenabling system to become self--aware and contextaware and context--aware: aware:
0monitoring execution behavior
0reasoning about its internal state0reasoning about its internal state
0changing the system or system state when necessary

exploits adaptively the threads available in a multiexploits adaptively the threads available in a multi--corecore

0reasoning about its internal state
0changing the system or system state when necessary

exploits adaptively the threads available in a multiexploits adaptively the threads available in a multi--corecoreexploits adaptively the threads available in a multiexploits adaptively the threads available in a multi core core
systemsystem

can be applied to a range of different scenarios, including:can be applied to a range of different scenarios, including:

exploits adaptively the threads available in a multiexploits adaptively the threads available in a multi core core
systemsystem

can be applied to a range of different scenarios, including:can be applied to a range of different scenarios, including:pp g , gpp g , g
0fault tolerance
0performance tuning

pp g , gpp g , g
0fault tolerance
0performance tuning
0power management
0behavior analysis
0power management
0behavior analysis

An Introspection Module

Introspection System sensors

Inference Engine

.

.

Inference Engine
(SHINE)

Application

.
Monitoring

Analysis

Knowledge
Base

System
Knowledge

.

.

Recovery

Prognostics

Knowledge

Application
Knowledge

Domain
Knowledge

…

. Prognostics

actuators

Example: SHINE Diagnostics and Prognostics
Architecture for DSN Health Management

FDIR Front-End, DSN Processor
Stability State

BEAM Frame
Generator

Time Variant
Slot Filler

Stability State
Estimate

Stability Limit
Estimate

Stability Limit
Checker

GUI

BEAM Specific
Displays

System-Wide Reports &
Fil

FDIR Data
Handler

Inter-Channel
Relationships

y
Health
Assessment
(SHINE)

Di ti

Logs Files

Station Monitor Data

DSSC Health

Failing Channel Contexts

P ti

Model-based
State Diagnosis

Fault
Identification Prognostics

KB KB

ed

KB

Diagnostics
(SHINE)

Channel Level
Diagnostics

Assessor (Heartbeats)Prognostics

State Summarizer
KBE

ng
lis

h-
B

as
e

D
ia

gn
os

is

B
lo

ck
D

ia
gr

am
s

Fa
ilu

re
P

re
di

ct
io

ns

C
ha

nn
el

D
ia

gn
os

isPlanning

Complex, Station and
Subsystem Level Health
Summaries

GUI

GUI GUIPlanner GUI GUI

Summaries

Contents

11 I t d tiI t d ti11 I t d tiI t d ti1.1. IntroductionIntroduction

2.2. An Introspection Framework for Fault ToleranceAn Introspection Framework for Fault Tolerance

1.1. IntroductionIntroduction

2.2. An Introspection Framework for Fault ToleranceAn Introspection Framework for Fault Tolerance

3.3. V&V versus IntrospectionV&V versus Introspection

44 Automatic Generation of FaultAutomatic Generation of Fault Tolerant CodeTolerant Code

3.3. V&V versus IntrospectionV&V versus Introspection

44 Automatic Generation of FaultAutomatic Generation of Fault Tolerant CodeTolerant Code4.4. Automatic Generation of FaultAutomatic Generation of Fault--Tolerant CodeTolerant Code

5.5. Concluding RemarksConcluding Remarks

4.4. Automatic Generation of FaultAutomatic Generation of Fault--Tolerant CodeTolerant Code

5.5. Concluding RemarksConcluding Remarks

Traditional V&V versus Introspection
Key Differences

Verification and Validation (V&V)Verification and Validation (V&V)Verification and Validation (V&V)Verification and Validation (V&V)Verification and Validation (V&V) Verification and Validation (V&V)
0is applied before actual program execution

to static source program
i th t t f t t ti f ti l i t t()

Verification and Validation (V&V) Verification and Validation (V&V)
0is applied before actual program execution

to static source program
i th t t f t t ti f ti l i t t()in the context of test executions for particular input set(s)

0focuses on design errors
in the context of test executions for particular input set(s)

0focuses on design errors

IntrospectionIntrospection
00performs performs execution time execution time monitoring, analysis, recoverymonitoring, analysis, recovery

IntrospectionIntrospection
00performs performs execution time execution time monitoring, analysis, recoverymonitoring, analysis, recoverypp g, y , yg, y , y
00current approach focuses on transient errorscurrent approach focuses on transient errors
00can, in principle, also address design errors can, in principle, also address design errors

pp g, y , yg, y , y
00current approach focuses on transient errorscurrent approach focuses on transient errors
00can, in principle, also address design errors can, in principle, also address design errors

Limitations of V&V

Verification: theoretical limitsVerification: theoretical limits
0undecidability : many problems are inherently unsolvable

h lti bl

Verification: theoretical limitsVerification: theoretical limits
0undecidability : many problems are inherently unsolvable

h lti blhalting problem
constant propagation

0NP-completeness: many theoretically solvable problems are intractable
due to exponential complexity

halting problem
constant propagation

0NP-completeness: many theoretically solvable problems are intractable
due to exponential complexitydue to exponential complexity

SAT problem
many graph problems

Model checking: subject to scalability challengeModel checking: subject to scalability challenge

due to exponential complexity
SAT problem
many graph problems

Model checking: subject to scalability challengeModel checking: subject to scalability challengeModel checking: subject to scalability challenge Model checking: subject to scalability challenge
0exponential growth of state space

TestTest

Model checking: subject to scalability challenge Model checking: subject to scalability challenge
0exponential growth of state space

TestTestestest
0 tests can prove presence or absence of faults for specific input sets
0but they cannot prove their absence for all inputs (Edsger Dijkstra)

estest
0 tests can prove presence or absence of faults for specific input sets
0but they cannot prove their absence for all inputs (Edsger Dijkstra)

V&V is V&V is inherently inherently unableunable to deal with transient errors or to deal with transient errors or
execution anomaliesexecution anomalies
V&V is V&V is inherently inherently unableunable to deal with transient errors or to deal with transient errors or
execution anomaliesexecution anomalies

Introspection Can Complement V&V

Introspection performs Introspection performs execution time execution time monitoring, monitoring, Introspection performs Introspection performs execution time execution time monitoring, monitoring, p pp p g,g,
analysis, recoveryanalysis, recovery

Introspection can deal with transient errors, execution Introspection can deal with transient errors, execution

p pp p g,g,
analysis, recoveryanalysis, recovery

Introspection can deal with transient errors, execution Introspection can deal with transient errors, execution
anomalies, performance problemsanomalies, performance problems
00this capability is inherently beyond the scope of V&V technologythis capability is inherently beyond the scope of V&V technology

and it can be extended to deal with design errorsand it can be extended to deal with design errors

anomalies, performance problemsanomalies, performance problems
00this capability is inherently beyond the scope of V&V technologythis capability is inherently beyond the scope of V&V technology

and it can be extended to deal with design errorsand it can be extended to deal with design errors00and it can be extended to deal with design errorsand it can be extended to deal with design errors

Future Goal: integration of introspection with current V&V Future Goal: integration of introspection with current V&V
technology into a comprehensive V&V schemetechnology into a comprehensive V&V scheme

00and it can be extended to deal with design errorsand it can be extended to deal with design errors

Future Goal: integration of introspection with current V&V Future Goal: integration of introspection with current V&V
technology into a comprehensive V&V schemetechnology into a comprehensive V&V schemetechnology into a comprehensive V&V schemetechnology into a comprehensive V&V schemetechnology into a comprehensive V&V schemetechnology into a comprehensive V&V scheme

Contents

11 I t d tiI t d ti11 I t d tiI t d ti1.1. IntroductionIntroduction

2.2. An Introspection Framework for Fault ToleranceAn Introspection Framework for Fault Tolerance

1.1. IntroductionIntroduction

2.2. An Introspection Framework for Fault ToleranceAn Introspection Framework for Fault Tolerance

3.3. V&V versus IntrospectionV&V versus Introspection

44 Automatic Generation of FaultAutomatic Generation of Fault Tolerant CodeTolerant Code

3.3. V&V versus IntrospectionV&V versus Introspection

44 Automatic Generation of FaultAutomatic Generation of Fault Tolerant CodeTolerant Code4.4. Automatic Generation of FaultAutomatic Generation of Fault--Tolerant CodeTolerant Code

5.5. Concluding RemarksConcluding Remarks

4.4. Automatic Generation of FaultAutomatic Generation of Fault--Tolerant CodeTolerant Code

5.5. Concluding RemarksConcluding Remarks

Effects of Single Event Upsets (SEUs)

SEUs and MBUs are radiationSEUs and MBUs are radiation--induced transient hardware induced transient hardware
errors, which may corrupt software in multiple ways:errors, which may corrupt software in multiple ways:
SEUs and MBUs are radiationSEUs and MBUs are radiation--induced transient hardware induced transient hardware
errors, which may corrupt software in multiple ways:errors, which may corrupt software in multiple ways:
0 instruction codes and addresses
0user data structures
0synchronization objects

0 instruction codes and addresses
0user data structures
0synchronization objects
0protected OS data structures
0synchronization and communication

P t ti l ff t i l dP t ti l ff t i l d

0protected OS data structures
0synchronization and communication

P t ti l ff t i l dP t ti l ff t i l dPotential effects include:Potential effects include:
0wrong or illegal instruction codes and addresses
0wrong user data in registers, cache, or DRAM

Potential effects include:Potential effects include:
0wrong or illegal instruction codes and addresses
0wrong user data in registers, cache, or DRAMg g
0control flow errors
0unwarranted exceptions
0hangs and crashes

g g
0control flow errors
0unwarranted exceptions
0hangs and crashes0hangs and crashes
0synchronization and communication faults
0hangs and crashes
0synchronization and communication faults

Design and Interaction Faults …

…can result in errors similar to those …can result in errors similar to those
that can be caused by transient
faults
that can be caused by transient
faultsfaultsfaults

Fault Examples: Sequential threads

S1: a= exp
… fault

S1: a= exp
…

X
undefined assignment to x

S2: x=f(a) S2: x=f(a)corruption of
assignment to
variable a

for i in 1:n {
fault destruction of loop range

for i in ?:? {X
S(i))

}

fault

corruption of
variable n

destruction of loop rangeS(i))
}

if cond
then S1 fault

if ???
then ? branch to wrong or
X

else S2
end if corruption of

condition cond

else ?
end if

undefined target

Example: Parallel Algorithms
Safety Violation

repeat forever
…

wait(mutex)

repeat forever
…

wait(mutex)

P1: P2:

wait(mutex) wait(mutex)
Critical Section 1:

Exclusive access of
P1 to R

Critical Section 2:
Exclusive access of

P2 to R

mutexX
signal(mutex)

…
end repeat

signal(mutex)
…

end repeat

fault

Resource
R

P1 P2
mutex mutex

R

Corruption of mutex destroys safety property of programCorruption of mutex destroys safety property of program

Example: Parallel Algorithms
Data Race

forall i in D, independent , A(f(i)) = exp(i) end

A(1)
… A(f(i1))

A(j)
…
A()

A(f(i2))
A(n)

Fault resulting in the

data race
f(i1)=f(i2)=j

Fault resulting in the
existence of indices
i1, i2, such that:

f(i1)=f(i2)=j

Example: Parallel Algorithms
Deadlock

P0
R1 Rn

P1 Pn-1

R1 …

Cyclic resource allocation graph results in deadlock
(as a result of programming or runtime error)

Static approach/analysis: deadlock prevention
Runtime analysis: deadlock avoidance and detection

Leveraging Results from HPC Program
Analysis Technology for Fault Tolerance

HighHigh--Performance Computing has produced a wealth of Performance Computing has produced a wealth of
methods for parallel program analysis since the 1990smethods for parallel program analysis since the 1990s
HighHigh--Performance Computing has produced a wealth of Performance Computing has produced a wealth of
methods for parallel program analysis since the 1990smethods for parallel program analysis since the 1990smethods for parallel program analysis since the 1990smethods for parallel program analysis since the 1990s
0source program static analysis and restructuring
0dynamic performance and behavior analysis of program executions

methods for parallel program analysis since the 1990smethods for parallel program analysis since the 1990s
0source program static analysis and restructuring
0dynamic performance and behavior analysis of program executions

Many of these methods can be adapted to or directly Many of these methods can be adapted to or directly
applied to fault toleranceapplied to fault tolerance
Many of these methods can be adapted to or directly Many of these methods can be adapted to or directly
applied to fault toleranceapplied to fault toleranceapplied to fault toleranceapplied to fault tolerance
0static program analysis (variable use, dependences, call chains)
0dynamic analysis of program and data flow

applied to fault toleranceapplied to fault tolerance
0static program analysis (variable use, dependences, call chains)
0dynamic analysis of program and data flow

This provides a basis for the generation of errorThis provides a basis for the generation of error--
checking assertions and error correction and recovery checking assertions and error correction and recovery
This provides a basis for the generation of errorThis provides a basis for the generation of error--
checking assertions and error correction and recovery checking assertions and error correction and recovery

Analysis
Static analysis and profiling determine properties of Static analysis and profiling determine properties of
dynamic program behavior dynamic program behavior beforebefore actual executionactual execution
Static analysis and profiling determine properties of Static analysis and profiling determine properties of
dynamic program behavior dynamic program behavior beforebefore actual executionactual execution

Analysis of Sequential ThreadsAnalysis of Sequential Threads
0control flow graph: represents the control structure in a program unit
0data flow analysis: solves data flow problems over a program graph

Analysis of Sequential ThreadsAnalysis of Sequential Threads
0control flow graph: represents the control structure in a program unit
0data flow analysis: solves data flow problems over a program graphy p p g g p
0dependence analysis: determines relationships between assignments of

values to (possibly subscripted, or pointer) variables and their uses
0program slice: the set of all statements that can affect a variable’s value

y p p g g p
0dependence analysis: determines relationships between assignments of

values to (possibly subscripted, or pointer) variables and their uses
0program slice: the set of all statements that can affect a variable’s valueprogram slice: the set of all statements that can affect a variable s value
0call graph: representing method/function/procedure calling relationships

Analysis of Parallel ConstructsAnalysis of Parallel Constructs

program slice: the set of all statements that can affect a variable s value
0call graph: representing method/function/procedure calling relationships

Analysis of Parallel ConstructsAnalysis of Parallel Constructs
0data parallel loops: analysis of “independence” property
0 locality and communication analysis
0 race condition analysis

0data parallel loops: analysis of “independence” property
0 locality and communication analysis
0 race condition analysisrace condition analysis
0safety and liveness analysis
0deadlock analysis

race condition analysis
0safety and liveness analysis
0deadlock analysis

Control Flow and Data Flow Analysis
{ }Control Flow Graph Control Flow Graph G=(N, E, nG=(N, E, n00))

0models the control structure in a
program unit (control flow analysis)

Control Flow Graph Control Flow Graph G=(N, E, nG=(N, E, n00))
0models the control structure in a

program unit (control flow analysis)

N={1,2,3,4,5,6}
E={(1,2),(2,3), (2,4),(3,5),(4,5),(5,6),(6,2)}
L: P(DEFS) powerset of all “definitions”
g(n) transformation function for n ε N

p g (y)
0N : set of basic blocks
0E: control transfers between basic blocks
0n0 : initial node

p g (y)
0N : set of basic blocks
0E: control transfers between basic blocks
0n0 : initial node

1 n0g(1)

0n0 : initial node

Monotone Data Flow Systems Monotone Data Flow Systems
M=(L, F, G, g)M=(L, F, G, g)

0n0 : initial node

Monotone Data Flow Systems Monotone Data Flow Systems
M=(L, F, G, g)M=(L, F, G, g)

2

3 4

g(2)

g(4)g(3)(, , , g)(, , , g)
0L is a bounded semilattice representing

the objects of interest, e.g., “definitions”
reaching a basic block, variable-value

(, , , g)(, , , g)
0L is a bounded semilattice representing

the objects of interest, e.g., “definitions”
reaching a basic block, variable-value 5g(5)

associations, available expressions
0F: monotone function space over L
0G=(N,E, n0) flow graph; g: N F

associations, available expressions
0F: monotone function space over L
0G=(N,E, n0) flow graph; g: N F

6g(6)

For example the transformation along
0under appropriate conditions, an optimal

“meet over all paths (MOP)” solution can
be determined by a general algorithm

0under appropriate conditions, an optimal
“meet over all paths (MOP)” solution can
be determined by a general algorithm

For example, the transformation along
path 12356 can be computed as
g(6) o g(5) o g(3) o g(2) o g(1)(L0)

Dependence Analysis
Dependence Dependence is a relation in a set of statement executions is a relation in a set of statement executions
that characterizes their access (R/W) to common variablesthat characterizes their access (R/W) to common variables
In general dependence analysis mayIn general dependence analysis may notnot be staticallybe statically

Dependence Dependence is a relation in a set of statement executions is a relation in a set of statement executions
that characterizes their access (R/W) to common variablesthat characterizes their access (R/W) to common variables
In general dependence analysis mayIn general dependence analysis may notnot be staticallybe staticallyIn general, dependence analysis may In general, dependence analysis may not not be statically be statically
feasiblefeasible——for example, in a 2D Euler solver performing a for example, in a 2D Euler solver performing a
sweep over an irregular gridsweep over an irregular grid
“Optimistic parallelization” (or the correctness of an“Optimistic parallelization” (or the correctness of an

In general, dependence analysis may In general, dependence analysis may not not be statically be statically
feasiblefeasible——for example, in a 2D Euler solver performing a for example, in a 2D Euler solver performing a
sweep over an irregular gridsweep over an irregular grid
“Optimistic parallelization” (or the correctness of an“Optimistic parallelization” (or the correctness of an“Optimistic parallelization” (or the correctness of an “Optimistic parallelization” (or the correctness of an

independentindependent assertion) may have to be dynamically verified assertion) may have to be dynamically verified
“Optimistic parallelization” (or the correctness of an “Optimistic parallelization” (or the correctness of an

independentindependent assertion) may have to be dynamically verified assertion) may have to be dynamically verified

GRID(vx2(e))

for e in all_edges do [independent]
…
delta=f(GRID(vx1(e)).V1, GRID(vx2(e)).V1)

…

e

(())

delta f(GRID(vx1(e)).V1, GRID(vx2(e)).V1)
…
GRID(vx1(e)).V2 -= delta
GRID(vx2(e)).V2 += delta

…

…… e

GRID(1())…
end

GRID(vx1(e))

Generation of Assertion-Based Fault Tolerance

source program

P program analysis
profiling

instrumentation
error detector generation Assertions Knowledge

Base

instr mented

P* User

instrumented
source program

with error detectors

Examples:
assert (A(i)>B(i)) and (D<Epsilon) at L; error (FT1,i,A(i),B(i),D,Epsilon)

assert (x < y+1000) invariant in (Loop1); error (FT2,…)

assert independence in (ParLoop); error (FT3,…)

Concluding Remarks

Future deepFuture deep--space missions will require onspace missions will require on--board highboard high--
capability computing for support of autonomy and sciencecapability computing for support of autonomy and science
Future deepFuture deep--space missions will require onspace missions will require on--board highboard high--
capability computing for support of autonomy and sciencecapability computing for support of autonomy and science

IntrospectionIntrospection
00provides a generic framework for dynamic monitoring and analysis of provides a generic framework for dynamic monitoring and analysis of

program executionprogram execution

IntrospectionIntrospection
00provides a generic framework for dynamic monitoring and analysis of provides a generic framework for dynamic monitoring and analysis of

program executionprogram executionprogram executionprogram execution
00can exploit multican exploit multi--core technologycore technology
00a prototype framework for introspection supporting fault tolerance has a prototype framework for introspection supporting fault tolerance has

been implemented for the Tile64 architecturebeen implemented for the Tile64 architecture

program executionprogram execution
00can exploit multican exploit multi--core technologycore technology
00a prototype framework for introspection supporting fault tolerance has a prototype framework for introspection supporting fault tolerance has

been implemented for the Tile64 architecturebeen implemented for the Tile64 architecturebeen implemented for the Tile64 architecturebeen implemented for the Tile64 architecture

Future work will address automatic analysis and generation of Future work will address automatic analysis and generation of
applicationapplication--adaptive faultadaptive fault--tolerant code tolerant code

been implemented for the Tile64 architecturebeen implemented for the Tile64 architecture

Future work will address automatic analysis and generation of Future work will address automatic analysis and generation of
applicationapplication--adaptive faultadaptive fault--tolerant code tolerant code

Integration of introspection with conventional V&V
technology adds a new dimension to fault tolerance
Integration of introspection with conventional V&V
technology adds a new dimension to fault tolerance

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California
Institute of Technology

