
Runtime Verification and Validation for Multi-Core Based On-Board Computing
Hans P. Zima and Mark L. James

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
{zima,mjames}@jpl.nasa.gov

Introduction
Future deep-space missions will need support for autonomy
and enhanced science processing. The integration of
emerging commodity multi-core technology into space-
borne systems can provide the required performance;
however, protecting such systems against faults has become
a critical research issue. In this paper we present an
approach to fault tolerance based on an introspection
framework that supports runtime monitoring of program
execution and feedback-oriented recovery. We discuss the
relationship of this approach to traditional Verification and
Validation (V&V) and propose methods for the automatic
generation of assertions from static and dynamic analysis.

A New Paradigm for Spacecraft Architectures
Today’s space-qualified on-board systems rely primarily on
fault tolerance provided by radiation-hardened
components—an approach that is not expected to scale with
the requirements of future missions. Recent developments
in the area of commercial multi-core architectures have
resulted in simpler processor cores, enhanced efficiency in
terms of performance per Watt, and a dramatic increase in
the number of cores on a chip. Examples include the Cell
Broadband Engine, Tilera Corporation’s Tile64 [Tile64],
and the 80-core Intel chip announced for 2011 that will
reach Terascale performance.

These trends suggest a new paradigm for spacecraft
architectures, in which the ultra-reliable radiation-hardened
core component responsible for control, navigation, data
handling, and communication will be complemented with a
Commercial-Off-The-Shelf (COTS)-based multi-core
system for autonomy and science processing, providing the
basis for a powerful parallel on-board supercomputing
capability. However, bringing COTS components into
space implies the need to address their vulnerability to
faults, in particular the transient effects caused by Single
Event Upsets (SEUs), which change the state of a single bit
in a register or memory. SEUs can cause multiple problems,
such as the corruption of instruction fetch/decode, address
selection, memory units, synchronization, communication,
or signal/interrupt processing. The effects resulting from
such faults may range from the (unrecognized) use of
corrupted data to the execution of wrong or illegal
instructions, branches, and data accesses in the program.
Hangs or crashes of the program, as well as unwarranted
exceptions are other possible consequences. In a distributed
system, transient faults can cause communication errors,
livelock, deadlock, data races, or arbitrary Byzantine
failure.

We have developed a software-based approach to fault
tolerance that relies on an introspection framework
supporting application-adaptive fault tolerance for mission

software executing on multi-core based high-performance
on-board architectures. Introspection performs dynamic
monitoring, analysis, and feedback-oriented management of
applications, supported by a real-time inference engine
[IJHPCA.09]. The relationship between an application and
the introspection system is based upon software-
implemented sensors and actuators, as outlined in Figure 1.

In this paper we discuss the relationship of the
introspection-based approach to traditional Verification and
Validation (V&V) and propose methods for the automatic
generation of assertions from static and dynamic analysis.

Relationship between V&V and Introspection
A program executing on a space-borne computing system
may be subject to software design errors as well as faults
caused by hardware malfunction or environmental
influences such as radiation and thermal effects. We
propose a systematic integration of introspection-based
fault tolerance with traditional V&V technology.
Consider a program, P, over a given input domain, and
assume that the intended behavior of P is defined by a
formal specification. Verification of P in the traditional
sense implies a static proof—performed before execution of
the program—that for all legal inputs, the application of P
to an input value conforms to the specification. Thus,
verification is a methodology that seeks to avoid faults. A
myriad of verification techniques related to all aspects of
sequential and parallel programs has been developed over
the past decades. They have been highly successful when
judiciously applied under the right conditions in well-
defined contexts. However, in general verification faces a
number of challenges and limitations, including theoretical
limits (undecidability and NP-completeness) and practical
scalability issues. A second major V&V technique is test.
As noticed by Dijkstra as early as 1972, tests can prove the
existence of an error but never the absence of all errors.
Consequently, V&V alone cannot provide a complete
solution to the problem of proving the correctness of
programs. It is a well-known fact that large programs
always contain design errors, no matter how much effort
has been invested in verification and test. Thus,
complementing V&V with runtime technology for error
detection and recovery, as presented by our introspection
framework, is essential.

Adaptive Fault Tolerance for On-Board
Computing
Our approach to fault tolerance is adaptive in the sense that
faults can be handled in a flexible way, depending on the
potential damage caused by them. Methods that are useful
in this context include assertion-based acceptance tests that
check the value of an assertion and transfer control to the
introspection system in case of violation, and fault detectors

that can effectively mask a fault by using redundant code
based on analysis information. Furthermore, faults in
critical sections of the code can be masked by leveraging
fixed redundancy techniques such as TMR or NMR.
Another technique is the replacement of a function with an
equivalent version that implements Algorithm-Based Fault
Tolerance (ABFT). Information supporting the generation
of assertion based acceptance tests as well as fault detectors
can be derived from static or dynamic automatic program
analysis, retrieved from domain- or system specific
information contained in the knowledge base or can be
directly specified by an expert user.
Automatic analysis of program properties relevant for fault
tolerance can be based on a rich spectrum of tools and
methods. This includes the static analysis of the control and
data structures of a program, its intra- and inter-procedural
control flow, data flow and data dependences, data access
patterns, and patterns of synchronization and
communication in multi-threaded programs. Other static
tools can check for the absence of deadlocks or race
conditions. Profiling from simulation runs or test executions
can contribute information on variable ranges, loop counts,
or potential bottlenecks. Furthermore, dynamic analysis
provides knowledge that cannot be derived at compile time,
such as the actual paths taken during a program execution
and dynamic dependence relationships. Consider a simple
example: an SEU can break the link between an assignment
and the use of the assigned value by modifying the target
address of the assignment. Possible consequences include
an attempt to use an undefined variable, dereference an
undefined pointer, or destroy a loop bound. The results of
static analysis (as well as results obtained from program
profiling) can be exploited for fault detection and recovery
in a number of ways, including the generation of assertions
in connection with specific program locations or program
regions, which express known properties that need to hold
in such places. The generation of such assertions can be
based on the analytically derived information in
combination with the generation of code that records the
corresponding relationships at runtime. A more elaborate
technique that exploits static analysis for the generation of a
fault detector using redundant code generation can be based
on program slicing. Some techniques applied to sequential
programs can be generalized to deal with multi-threaded
programs, in particular to programs whose execution is
organized as a data-parallel set of thread according to the
Single-Program-Multiple-Data (SPMD) paradigm. This is
highly relevant since the vast majority of parallel scientific
applications belong to this category.

Related Work
Our work is specifically related to efforts for providing
fault-tolerant on-board computing in space, including the
Remote Exploration and Experimentation (REE) project
[Some.99] and NASA's Millenium ST-8 project
[Samson.07]. Some significant work has been done in the
area of assertions. The EAGLE system [EAGLE] provides
an assertion language with temporal constraints. The
Design for Verification (D4V) system [DV4] uses dynamic
assertions, which are objects with state that are constructed
at design time and tied to program objects and locations.

Language support for assertions and invariants has been
provided in Java 1.4, Eiffel for pre- and post conditions in
Hoare's logic, and the Java Modeling Language (JML).
Intelligent resource management in an introspection-based
approach has been proposed in [ISI.07]. Finally, ideas
similar to introspection have been used by Iyer and co-
workers for application-specific security [Iyer.07].

Figure 1: Introspection Framework for Fault Tolerance

References
[EAGLE] A.Goldberg,K.Havelund, and C.McGann:
Runtime Verification for Autonomous Spacecraft
Software. Proc.2005 IEEE Aerospace Conference,
pp.507-516, March 2005

[IJHPCA.09] M.L.James,A.A.Shapiro,P.L.Springer,
and H.P.Zima: Adaptive Fault Tolerance for Scalable
Cluster Computing in Space. Intl. Journal of High
Performance Computing Applications, 2009 (in print)

[Iyer.07] R.K.Iyer et al.: Toward Application-Aware
Security and Reliability.
IEEE Security and Privacy, 5(1):57-62, 2007.

[ISI.07] D.-I.Kang,J.Suh,J.O.McMahon,S.P.Crago:
Preliminary Study toward Intelligent Run-Time
Resource Management Techniques for Large Multi-
CoreArchitectures. Proc.HPEC’07, September 2007

[DV4] P.C.Mehlitz and J.Penix: Design for
Verification with Dynamic Assertions.
Proc.2005 29th Annual IEEE/NASA Software
Engineering Workshop (SEW’05), 2005

 [Samson.07] J.Samson et al.: High Performance
Dependable Multiprocessor II.Proc.2007 IEEE
Aerospace Conference, Big Sky, MT (March 2007)

[Some.99] R.Some and D.Ngo: REE: A COTS-Based
Fault-Tolerant Parallel Processing Supercomputer for
Spacecraft Onboard Scientific Data Analysis.
Proc.Digital Avionics Systems Conference, pp.7.B.3-1-
7.B.3-12, 1999

[Tile64] Tile 64 Processor Family
http://www.tilera.com (2007)

http://www.tilera.com/

