
 A Multi-Paradigm Programming Model for Heterogeneous Architectures

Michael Champigny mchampig@mc.com
Mercury Computer Systems, Advanced Computing Solutions

Introduction
Microprocessor trends indicate a shift towards wider data
paths, flattening clock frequencies, and increasingly
complex memory hierarchies. Asymmetric architectures
with a mix of complex out-of-order cores and hardware
managed caches, fixed-function logic for data-parallel
computations, and a larger numbers of simpler in-order
cores with software managed caches appear to achieve an
optimal balance of die area, power-performance and
performance-cost ratios.

Mapping algorithms and application workflow to embedded
and heterogeneous architectures poses several challenges to
application developers. Data locality is a first-order concern
in the presence of specialized accelerators such as graphics
processors which must share the interconnect bus with chip
multiprocessors. Explicit multi-threading and complex
synchronization protocols employed to reduce the latency
of compute-bound workloads are prone to oversubscription,
race conditions, and deadlock. Existing industry standards,
such as OpenMP for coherent memory architectures and
OpenCL for heterogeneous architectures work well for
many applications but have some shortcomings in the
embedded domain. OpenMP requires compiler support
which may limit broad applicability to some embedded
targets, and favors workloads with highly structured
memory access patterns such as parallel loop constructs.
OpenCL has optional support for exposing parallelism to
chip multiprocessors but has limited support for task
parallelism, mostly due to the uniform task interface it must
support on GPU devices which currently lack support for
nested task parallelism and point-to-point synchronization.

We describe preliminary results of our research in parallel
programming environments for embedded, heterogeneous
platforms. Our solution for mapping algorithm kernels and
applications to a mixture of CMP (chip multiprocessors),
MCA (many-core arrays), and GPU (graphics processing
units) accelerators is a software stack consisting of portable,
ISO C++ language annotations for supporting multiple
parallel programming model interfaces, a dynamic runtime
scheduler for load balancing, and a hardware abstraction
layer and component model for integrating specialized
accelerators such as GPU devices. Our design choices were
motivated by our goals to minimize latency, reduce jitter
across multiple algorithm executions, and maintain
acceptable scalability with evolving silicon roadmaps while
improving productivity by supporting multiple parallel
programming paradigms in a unified framework.

We demonstrate empirical performance results of our
parallel runtime measured against the current state-of-the-
art solutions in industry, namely OpenMP and Cilk Arts
Cilk++. We chose these solutions for a comparative study

due to their maturity in the industry, rich source of example
algorithms, number of empirical studies, as well as their
different algorithmic approaches. Our tests consisted of
several numerical kernels operating on relatively small data
sets common in embedded defense and digital signal
processing applications. The tests reveal that latency,
deterministic performance, and parallel efficiency were as
good as, and in many cases exceeded, existing solutions
with a similar measure of changes at the source code level.
These results were achieved using COTS compilers and
tooling and required no changes in the development
workflow. In addition, there is no requirement to use
proprietary or customized tools.

Architecture
As shown in Figure 1, our programming environment is a
strictly layered software stack, allowing developers the
flexibility to choose an appropriate level of abstraction
based on their requirements. We avoid performance
penalties at all levels of the stack by employing judicious
use of template meta-programming, code in-lining, and the
use of the pre-processor. At the highest level, application
developers can employ the programming model interface
that most closely matches the structure of a specific
algorithm or workflow. A compiler back-end could target
the runtime layer if a novel programming model is required.
These choices can be made at any level of granularity
throughout an application, with mixed paradigms common
in most applications.

Figure 1: Parallel Programming Stack.

At the top of the stack is the programming model interface,
currently consisting of a model for representing divide-and-
conquer, nested task parallelism and a model for
representing data parallel computation. These models
present a different interface to a unified runtime layer

which the developer links their application to. A
programmer annotates ISO C++ source code with macros
operating as language extensions. These annotations expose
fine-grained parallelism to the unified runtime layer. It is
relatively straightforward to incorporate additional
programming model interfaces in an additive way without
disrupting the lower-level runtime. Porting existing kernels
or workflows is mainly an exercise in choosing the
appropriate programming model and mapping the source
language annotations to the selected programming model
interface. Sequential code may evolve incrementally by the
insertion of the appropriate parallel language annotations.
Any application may freely make use of more than one
programming model interface. For example, at higher
abstraction levels of an application, functional
decomposition can expose coarse-grained task parallelism.
At the lower levels, such as a loop block, it may be
appropriate to switch to data decomposition and process
subsets of the data in parallel.

The runtime layer consists of a dynamic, load-balancing
scheduler. The scheduler employs a variation of a work-
stealing algorithm and cache-reuse heuristics, proven
elsewhere [1] to achieve optimal efficiency. The runtime is
work conserving and executes fine-grained tasks without
pre-emption, similar to proposed hardware approaches [2].
In close cooperation with the runtime scheduler, the ACM
(accelerator component model) is used to integrate and
manage throughput-oriented devices, such as NVIDIA and
ATI GPU devices, Intel’s Larrabee, as well as the Cell SPU
complex. This component load balances compute kernels
across multiple GPUs, even in multi-vendor configurations.
As with any component model, additional components may
be added to the system so long as they implement the
expected interface for data transfer (such as DMA
operations), computation offload, and module and kernel
management.

Finally, an operating system abstraction layer is used to
isolate the upper levels of the stack from platform-
dependent features. Ideally, porting the entire stack to a
new platform involves porting only this abstraction layer.
Operating system features that are abstracted include thread
management, synchronization primitives, memory page
allocation, and performance-related hardware features.

Programming Model
Developers are exposed to the programming environment
through parallel programming model interfaces augmented
with future variables. These effectively isolate the design
paradigm from the runtime implementation. We proved the
efficacy of this approach by implementing several
numerical algorithms with multiple programming model
interfaces. Numerical algorithms better expressed in a data-
parallel style proved more efficient and often took less lines
of code than the divide-and-conquer representations, even
though the underlying runtime layer is shared. Because our
programming environment is compiler-agnostic, we
leverage native vendor compilers optimized for use on
specific processors for better performance. This proved
advantageous for several numerical kernels and provided
interesting comparisons between compiler implementations
on the same platform. We plan on extending the number of

programming model interfaces we expose in the future by
lifting current restrictions on control flow in the
computation graph.

Performance
For smaller data sets our runtime was more effective in
terms of parallel efficiency and latency for compute-bound
workloads. For larger data sets, results varied more widely
across different runtimes and kernels. In all cases, the
standard deviation across batched kernel executions was
smaller in our runtime in comparison with OpenMP, Intel
Threading Building Blocks, and Cilk++ which is likely the
result of our focused optimizations for embedded, real-time
algorithms. In Figure 2 we note the results of a dense square
matrix multiplication with single-precision floating point
dimensions of 256x256. On a dual-core CMP, a typical
configuration for an embedded platform, we see that our
scheduler outperforms all others at each tested tile size.
This test illustrates the common trend we observed across
many kernels, data set sizes, and compilers.

Figure 2: Dense Square Matrix Multiply Latency (64K-point).

Summary
We presented initial research findings and preliminary
performance results of a parallel programming environment
for embedded and heterogeneous platforms. Our approach
leverages open or proprietary ISO C++ compilers to expose
latent fine-grained task and data parallelism in applications
and algorithms and map it to a variety of parallel
architectures, such as chip multiprocessors, symmetric
multiprocessors, and GPU accelerators. A distinguishing
feature of our architecture is the inclusion of programming
model interfaces to a single, unified runtime to improve
productivity and to expedite the incorporation of existing
parallel algorithms into our framework.

References
[1] U. A. Acar, G. E. Blelloch and R. D. Blumofe, The Data

Locality of Work Stealing, Theory of Computing Systems,
pg. 1-12, 2000.

[2] S. Kumar, C. J. Hughes, and A. Nguyen, Carbon:
Architectural Support for Fine-Grained Parallelism on Chip
Multiprocessors, ACM SIGARCH, Vol. 35, Issue 2, pg. 162-
173, 2007.

