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Introduction 
Microprocessor trends indicate a shift towards wider data 
paths, flattening clock frequencies, and increasingly 
complex memory hierarchies. Asymmetric architectures 
with a mix of complex out-of-order cores and hardware 
managed caches, fixed-function logic for data-parallel 
computations, and a larger numbers of simpler in-order 
cores with software managed caches appear to achieve an 
optimal balance of die area, power-performance and 
performance-cost ratios. 

Mapping algorithms and application workflow to embedded 
and heterogeneous architectures poses several challenges to 
application developers. Data locality is a first-order concern 
in the presence of specialized accelerators such as graphics 
processors which must share the interconnect bus with chip 
multiprocessors. Explicit multi-threading and complex 
synchronization protocols employed to reduce the latency 
of compute-bound workloads are prone to oversubscription, 
race conditions, and deadlock. Existing industry standards, 
such as OpenMP for coherent memory architectures and 
OpenCL for heterogeneous architectures work well for 
many applications but have some shortcomings in the 
embedded domain. OpenMP requires compiler support 
which may limit broad applicability to some embedded 
targets, and favors workloads with highly structured 
memory access patterns such as parallel loop constructs. 
OpenCL has optional support for exposing parallelism to 
chip multiprocessors but has limited support for task 
parallelism, mostly due to the uniform task interface it must 
support on GPU devices which currently lack support for 
nested task parallelism and point-to-point synchronization. 

We describe preliminary results of our research in parallel 
programming environments for embedded, heterogeneous 
platforms. Our solution for mapping algorithm kernels and 
applications to a mixture of CMP (chip multiprocessors), 
MCA (many-core arrays), and GPU (graphics processing 
units) accelerators is a software stack consisting of portable, 
ISO C++ language annotations for supporting multiple 
parallel programming model interfaces, a dynamic runtime 
scheduler for load balancing, and a hardware abstraction 
layer and component model for integrating specialized 
accelerators such as GPU devices. Our design choices were 
motivated by our goals to minimize latency, reduce jitter 
across multiple algorithm executions, and maintain 
acceptable scalability with evolving silicon roadmaps while 
improving productivity by supporting multiple parallel 
programming paradigms in a unified framework. 

We demonstrate empirical performance results of our 
parallel runtime measured against the current state-of-the-
art solutions in industry, namely OpenMP and Cilk Arts 
Cilk++. We chose these solutions for a comparative study 

due to their maturity in the industry, rich source of example 
algorithms, number of empirical studies, as well as their 
different algorithmic approaches. Our tests consisted of 
several numerical kernels operating on relatively small data 
sets common in embedded defense and digital signal 
processing applications. The tests reveal that latency, 
deterministic performance, and parallel efficiency were as 
good as, and in many cases exceeded, existing solutions 
with a similar measure of changes at the source code level. 
These results were achieved using COTS compilers and 
tooling and required no changes in the development 
workflow. In addition, there is no requirement to use 
proprietary or customized tools. 

Architecture 
As shown in Figure 1, our programming environment is a 
strictly layered software stack, allowing developers the 
flexibility to choose an appropriate level of abstraction 
based on their requirements. We avoid performance 
penalties at all levels of the stack by employing judicious 
use of template meta-programming, code in-lining, and the 
use of the pre-processor. At the highest level, application 
developers can employ the programming model interface 
that most closely matches the structure of a specific 
algorithm or workflow. A compiler back-end could target 
the runtime layer if a novel programming model is required. 
These choices can be made at any level of granularity 
throughout an application, with mixed paradigms common 
in most applications. 

 
Figure 1: Parallel Programming Stack. 

 

At the top of the stack is the programming model interface, 
currently consisting of a model for representing divide-and-
conquer, nested task parallelism and a model for 
representing data parallel computation. These models 
present a different interface to a unified runtime layer 



which the developer links their application to. A 
programmer annotates ISO C++ source code with macros 
operating as language extensions. These annotations expose 
fine-grained parallelism to the unified runtime layer. It is 
relatively straightforward to incorporate additional 
programming model interfaces in an additive way without 
disrupting the lower-level runtime. Porting existing kernels 
or workflows is mainly an exercise in choosing the 
appropriate programming model and mapping the source 
language annotations to the selected programming model 
interface. Sequential code may evolve incrementally by the 
insertion of the appropriate parallel language annotations. 
Any application may freely make use of more than one 
programming model interface. For example, at higher 
abstraction levels of an application, functional 
decomposition can expose coarse-grained task parallelism. 
At the lower levels, such as a loop block, it may be 
appropriate to switch to data decomposition and process 
subsets of the data in parallel. 

The runtime layer consists of a dynamic, load-balancing 
scheduler. The scheduler employs a variation of a work-
stealing algorithm and cache-reuse heuristics, proven 
elsewhere [1] to achieve optimal efficiency. The runtime is 
work conserving and executes fine-grained tasks without 
pre-emption, similar to proposed hardware approaches [2]. 
In close cooperation with the runtime scheduler, the ACM 
(accelerator component model) is used to integrate and 
manage throughput-oriented devices, such as NVIDIA and 
ATI GPU devices, Intel’s Larrabee, as well as the Cell SPU 
complex. This component load balances compute kernels 
across multiple GPUs, even in multi-vendor configurations. 
As with any component model, additional components may 
be added to the system so long as they implement the 
expected interface for data transfer (such as DMA 
operations), computation offload, and module and kernel 
management. 

Finally, an operating system abstraction layer is used to 
isolate the upper levels of the stack from platform-
dependent features. Ideally, porting the entire stack to a 
new platform involves porting only this abstraction layer. 
Operating system features that are abstracted include thread 
management, synchronization primitives, memory page 
allocation, and performance-related hardware features. 

Programming Model 
Developers are exposed to the programming environment 
through parallel programming model interfaces augmented 
with future variables. These effectively isolate the design 
paradigm from the runtime implementation. We proved the 
efficacy of this approach by implementing several 
numerical algorithms with multiple programming model 
interfaces. Numerical algorithms better expressed in a data-
parallel style proved more efficient and often took less lines 
of code than the divide-and-conquer representations, even 
though the underlying runtime layer is shared. Because our 
programming environment is compiler-agnostic, we 
leverage native vendor compilers optimized for use on 
specific processors for better performance. This proved 
advantageous for several numerical kernels and provided 
interesting comparisons between compiler implementations 
on the same platform. We plan on extending the number of 

programming model interfaces we expose in the future by 
lifting current restrictions on control flow in the 
computation graph. 

Performance 
For smaller data sets our runtime was more effective in 
terms of parallel efficiency and latency for compute-bound 
workloads. For larger data sets, results varied more widely 
across different runtimes and kernels. In all cases, the 
standard deviation across batched kernel executions was 
smaller in our runtime in comparison with OpenMP, Intel 
Threading Building Blocks, and Cilk++ which is likely the 
result of our focused optimizations for embedded, real-time 
algorithms. In Figure 2 we note the results of a dense square 
matrix multiplication with single-precision floating point 
dimensions of 256x256. On a dual-core CMP, a typical 
configuration for an embedded platform, we see that our 
scheduler outperforms all others at each tested tile size. 
This test illustrates the common trend we observed across 
many kernels, data set sizes, and compilers. 

 
Figure 2: Dense Square Matrix Multiply Latency (64K-point). 

 
Summary 
We presented initial research findings and preliminary 
performance results of a parallel programming environment 
for embedded and heterogeneous platforms. Our approach 
leverages open or proprietary ISO C++ compilers to expose 
latent fine-grained task and data parallelism in applications 
and algorithms and map it to a variety of parallel 
architectures, such as chip multiprocessors, symmetric 
multiprocessors, and GPU accelerators. A distinguishing 
feature of our architecture is the inclusion of programming 
model interfaces to a single, unified runtime to improve 
productivity and to expedite the incorporation of existing 
parallel algorithms into our framework. 
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