
Remote Store Programming

Henry Hoffmann David Wentzlaff Anant AgarwalHenry Hoffmann David Wentzlaff Anant Agarwal

High Performance Embedded Computing Workshop
September 2009September 2009

Remote Store Programming Outline

• Introduction/Motivation
K F f RSP• Key Features of RSP
– Usability
– Performance

• Evaluation
– Methodology
– Results

• Conclusion

Remote Store Programming 2

Multicore requires innovation to balance usability and performance

Cavium – 16 cores

Tilera – 64 cores

Intel – 4 cores
Sun – 8 cores

IBM – 9 cores

Raw – 16 cores

• Parallel programming is becoming ubiquitous
– Parallel programming is no longer the domain of select experts
– Balancing ease-of-use and performance is more important than ever

Remote Store Programming 3

Balancing ease of use and performance is more important than ever

Existing programming models do no combine usability and
performance

Globally Shared Cache

data

Threads with cache coherence (CC) Direct Memory Access

(DMA)

Local
Cache

data

store

Local
Cache

data

load

Local
Memory

data

store

Local
Memory

data

load

RF

store

RF

load

Core 0 Core 1

RF DMA

store

RF DMA

load

Core 0 Core 1

• Familiar loads and stores
• Fine-grained comm. is easy

• Requires additional software API
• Hard to schedule DMA transactions

Usability

Performance • No control over locality
• Programmer has complete control

over locality

Remote Store Programming (RSP) can combine usability with performance

No control over locality over locality

Remote Store Programming 4

Remote Store Programming (RSP) can combine usability with performance

RSP combines the usability of Threads with the performance of DMA

Globally Shared Cache
d t Local LocalL l L l

RSP Threads DMA

Local
Cache

data

stor
e

Local
Cache

data

load

data Local
Memory

RF DMA

data

store

Local
Memory

RF DMA

data

load

Local
Cache

RF

store

Local
Cache

RF

data

load
1

2

RF
e

RF

Core 0 Core 1

RF DMA RF DMA

Core 0 Core 1

RF RF

Core 0 Core 1

Usability
• Familiar loads and stores
• Fine-grained

Can develop high
performance programs in a

1

Implications

Performance

g
• One-sided

• Software controls locality Always access physically
close memory and minimize

shorter amount of time

2

Remote Store Programming 5

load latency

Remote Store Programming Outline

• Introduction/Motivation
K F f RSP• Key Features of RSP
– Usability
– Performance

• Evaluation
– Methodology
– Results

• Conclusion

Remote Store Programming 6

RSP captures the usability of threads and shared memory
Usability1

Performance2

Remotely writable

b ff

Memory 1
private

Memory 0
private

Core 0 Core 1

Process 0
buffer = map_remote(4,1);

*buffer = 42;

buffer

Process 1
buffer =

t it ll (4 0)Core 0 Core 1;

barrier();
remote_write_alloc(4,0);

barrier();

print(buffer);

• Process Model
E h h i t b d f lt– Each process has private memory by default

– A process can grant write access to remote processes

• Communication
– Processes communicate by storing to remotely writable memory

• Synchronization
– Supports test-and-set, compare-and-swap, etc.

Remote Store Programming 7

– We assumer higher level primitives like barrier

RSP emphasizes locality for performance on large scale
multicores

Usability1

Performance2

Local
Cache

Local
Cache

b ff

RF

store

RF

buffer

load

Core 0 Core 1

network

Core 1 is a consumer:
All loads guaranteed to be local

and minimum latency

Core 0 is a producer:
Data transferred from Core 0’s

registers to Core 1’s cache

Core 0 Core 1

Step Description Performance benefit

C 1 i C 0 it i i f b ff1 Core 1 gives Core 0 write permission for buffer

Core 0 receives write permission from Core 1
for buffer

1

2

• Cores access close memories
• Load latency is minimized

Lo
ca

lit
y

Core 0’s store instructions target remote
memory on consumer (buffer)

Core 1’s standard load instructions are used to

3

Fi
ne

Gr

ain

Co
m

m
. • Complete overlap of

communication and
t ti

Remote Store Programming 8

Core 1 s standard load instructions are used to
read data from cache4

C computation

2D FFT example illustrates performance and usability
Usability1

Performance2

Globally Shared Cache

Local
Cache

data

Local
Cache

data

data Local
Memory

data

Local
Memory

data

Threads DMA

Local
Cache

Local
Cache

data

RSP

Matrix A, C;

RF

data

store

RF

data

load

Core 0 Core 1

RF DMA

store

RF DMA

load

Core 0 Core 1

RF

store

RF

load

Core 0 Core 1

Matrix A, B, B2, C; Matrix A, C;Matrix A, C;
shared Matrix B;
pid = my_id();
init(A);
row fft(B A pid);

Matrix A, B, B2, C;
pid = my_id();
init(A);
row_fft(B,A, pid);
DMA move(B2 B);

Matrix A, C;
Matrix B =

alloc_rsp();
pid = my_id();
init(A);row_fft(B,A, pid);

barrier();
col_fft(C,B,pid);

DMA_move(B2,B);
col_fft(C,B2,pid);

init(A);
row_fft(B,A, pid);
barrier();
col_fft(C,B,pid);

Easy to write
Fine-grain
High locality

Hard to write
Coarse-grain
High locality

Easiest to write
Fine-grain
No locality

Remote Store Programming 9

For more detail see: Hoffmann, Wentzlaff, Agarwal. Remote Store Programming: Mechanisms and Performance. Technical Report MIT-CSAIL-
TR-2009-017. May, 2009

RSP requires incremental hardware support

Local
Cache

Local
Cache

buffer

RF

store

RF

load

Core 0 Core 1

network

• RSP requires incremental additional hardware
– In processor supporting cache coherent shared memory

• Additional memory allocation mode for remotely writable memory
• Do not update local cache when writing to remote memory

– In processor without cache coherent shared memory
• Memory allocation for remotely writable memory
• Write misses on remote cores forward miss to allocating core

Remote Store Programming 10

g

Remote Store Programming Outline

• Introduction/Motivation
K Diff i f RSP• Key Differentiators of RSP
– Usability
– Performance

• Evaluation
– Methodology
– Results

• Conclusion

Remote Store Programming 11

RSP, Threads, and DMA are compared on the TILEPro64 processor

Emulate RSP
on TILEPro64

Implement
embedded

benchmarks
ith RSP

Compare
performance to

cache-coherence
d DMAwith RSP and DMA

M t i TTILEP 64 t C d • Matrix Transpose
• Two-dimensional

FFT
• Matrix Multiply

• TILEPro64 supports
Cache-coherence
and DMA

• Additional memory

• Compare speedup
and load latency

• Matrix Multiply
• Bitonic Sort
• Convolution
• Floyd Steinberg

Additional memory
allocation modes let
us emulate RSP

• Floyd-Steinberg
Error Diffusion

• H.264 Encode
• Histogram

Remote Store Programming 12

Histogram

Speedups of RSP and cache-coherent benchmarks

48

56

64
RSP
CC

80.6

Bitonic sort

48

56

64
RSP
CC

48

56

64
RSP
CC

48

56

64
RSP
CC

Convolution Error Diff. 2D FFT

8

16

24

32

40

8

16

24

32

40

8

16

24

32

40

16

24

32

40

Sp
ee

du
p

0

8

2 4 8 16 32 64
0

8

2 4 8 16 32 64
0

8

2 4 8 16 32 64
0

8

2 4 8 16 32 64

64
Image Hist.

64
Matrix Mul.

64
Matrix Trans.

64
H.264

32

40

48

56 RSP
CC

32

40

48

56

64
RSP
CC

32

40

48

56
RSP
CC

32

40

48

56 RSP
CC

du
p

0

8

16

24

2 4 8 16 32 64
0

8

16

24

2 4 8 16 32 6
0

8

16

24

2 4 8 16 32 64
0

8

16

24

2 4 8 16 32 40

Sp
ee

d

Remote Store Programming 13

2 4 8 16 32 64 2 4 8 16 32 6
4

2 4 8 16 32 64 2 4 8 16 32 40

Cores Cores Cores Cores

RSP is outperforms threading with cache coherence for large
numbers of cores

Speedup of RSP versus Cache Coherence for selected benchmarks
(higher is better)

ed
 o

f C
C

2.5

3

3.5 • For large numbers of cores, RSP provides
significant benefit

• 5 RSP apps are 1.5x faster than CC for 64 cores
• RSP FFT is > 3x faster than CC for 64 cores

fR
SP

/S
pe

e

1

1.5

2

Sp
ee

d
of

0

0.5

1

2 4 8 16 32 64
Cores

C l tiT

2 4 8 16 32 64

Remote Store Programming 14

Convolution

Histogram

Transpose

Error Diffusion

Matrix Multiply

Bitonic Sort

FFT

H.264

RSP’s emphasis on locality results in low load latency

Load latency of selected benchmarks on RSP versus Cache Coherence
(lower is better)(lower is better)

f R
SP

/C
C

3

3.5

d
la

te
nc

y
of

1.5

2

2.5

er
ag

e
lo

ad

0

0.5

1

1.5

Av
e

C l tiT

0
2 4 8 16 32 64

Cores

Remote Store Programming 15

Convolution

Histogram

Transpose

Error Diffusion

Matrix Multiply

Bitonic Sort

FFT

H.264

Comparison of RSP, Threading, and DMA for two applications

3

3.5

d
M

em
or

y

Cache Coherence
DMA 3

3.5

M
em

or
y

Cache Coherence
DMA

H.264 Encode 2D FFT

2

2.5

iz
ed

 to
 S

ha
re

d

RSP

2

2.5

3

iv
e

to
 S

ha
re

d DMA
RSP

0.5

1

1.5

m
an

ce
 N

or
m

al
i

0 5

1

1.5

or
m

an
ce

 R
el

at
i

0

0.5

2 4 8 16 32 40

Cores

Pe
rf

or
m

0

0.5

2 4 8 16 32 64
Cores

Pe
rf

o

• RSP is faster than Threading and DMA due to fine emphasis on locality and fine-
grain communication

Remote Store Programming 16

Remote Store Programming Outline

• Introduction/Motivation
K Diff i f RSP• Key Differentiators of RSP
– Usability
– Performance
– Hardware Requirements

• Evaluation
– Methodologygy
– Results

• Conclusion

Remote Store Programming 17

• Conclusion

Conclusion

• Talk presents Remote Store Programming
– A programming model for multicore
– Uses familiar communication mechanisms
– Achieves high-performance through locality and fine-grain communication
– Requires incremental hardware support

• Conclusion:
– Threads and shared memory good performance and easy to use
– For large numbers of cores RSP can outperform threading because of greater localityg p g g y
– RSP is easier to use than DMA and slightly harder than Threads

• Anticipated use for RSP:
Can supplement threads and cache coherent shared memory on multicore– Can supplement threads and cache-coherent shared memory on multicore

• Most code uses standard threading and shared memory techniques
• Performance critical sections of code or applications use RSP for additional performance
• Gentle Slope to programming multicore

Remote Store Programming 18

