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Multicore requires innovation to balance usability and performance

Cavium – 16 cores

Tilera – 64 cores

Intel – 4 cores
Sun – 8 cores

IBM – 9 cores

Raw – 16 cores

• Parallel programming is becoming ubiquitous 
– Parallel programming is no longer the domain of select experts
– Balancing ease-of-use and performance is more important than ever

Remote Store Programming  3

Balancing ease of use and performance is more important than ever



Existing programming models do no combine usability and 
performance
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• Familiar loads and stores
• Fine-grained comm. is easy

• Requires additional software API
• Hard to schedule DMA transactions

Usability

Performance • No control over locality
• Programmer has complete control 

over locality

Remote Store Programming (RSP) can combine usability with performance

No control over locality over locality
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Remote Store Programming (RSP) can combine usability with performance



RSP combines the usability of Threads with the performance of DMA 
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Usability
• Familiar loads and stores
• Fine-grained

Can develop high 
performance programs in a 

1

Implications

Performance
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• One-sided

• Software controls locality Always access physically 
close memory and minimize 

shorter amount of time
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RSP captures the usability of threads and shared memory 
Usability1

Performance2

Remotely writable

b ff

Memory 1
private

Memory 0
private

Core 0 Core 1

Process 0
buffer = map_remote(4,1);

*buffer = 42;

buffer

Process 1
buffer = 

t it ll (4 0)Core 0 Core 1;

barrier();
remote_write_alloc(4,0);

barrier();

print(buffer);

• Process Model
E h  h  i t   b  d f lt– Each process has private memory by default

– A process can grant write access to remote processes

• Communication 
– Processes communicate by storing to remotely writable memory

• Synchronization
– Supports test-and-set, compare-and-swap, etc.
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– We assumer higher level primitives like barrier



RSP emphasizes locality for performance on large scale 
multicores 

Usability1

Performance2
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network

Core 1 is a consumer:
All loads guaranteed to be local 

and minimum latency

Core 0 is a producer:
Data transferred from Core 0’s 

registers to Core 1’s cache

Core 0 Core 1

Step Description Performance benefit

C  1 i  C  0 it  i i  f  b ff1 Core 1 gives Core 0 write permission for buffer

Core 0 receives write permission from Core 1  
for buffer

1
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• Cores access close memories
• Load latency is minimized
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Core 0’s store instructions target remote 
memory on consumer (buffer)

Core 1’s standard load instructions are used to 
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Core 1 s standard load instructions are used to 
read data from cache4

C computation



2D FFT example illustrates performance and usability
Usability1

Performance2

Globally Shared Cache
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Threads DMA
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Matrix A, C;

RF
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RF
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store
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load
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RF

store

RF

load
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Matrix A, B, B2, C; Matrix A, C;Matrix A, C;
shared Matrix B;
pid = my_id();
init(A);
row fft(B A pid);

Matrix A, B, B2, C;
pid = my_id();
init(A);
row_fft(B,A, pid);
DMA move(B2 B);

Matrix A, C;
Matrix B = 

alloc_rsp();
pid = my_id();
init(A);row_fft(B,A, pid);

barrier();
col_fft(C,B,pid);

DMA_move(B2,B);
col_fft(C,B2,pid);

init(A);
row_fft(B,A, pid);
barrier();
col_fft(C,B,pid);

Easy to write
Fine-grain 
High locality

Hard to write
Coarse-grain 
High locality

Easiest to write
Fine-grain 
No locality
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For more detail see: Hoffmann, Wentzlaff, Agarwal. Remote Store Programming: Mechanisms and Performance. Technical Report MIT-CSAIL-
TR-2009-017. May, 2009 



RSP requires incremental hardware support

Local
Cache

Local
Cache

buffer

RF

store

RF

load

Core 0 Core 1

network

• RSP requires incremental additional hardware
– In processor supporting cache coherent shared memory

• Additional memory allocation mode for remotely writable memory
• Do not update local cache when writing to remote memory

– In processor without cache coherent shared memory
• Memory allocation for remotely writable memory
• Write misses on remote cores forward miss to allocating core
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RSP, Threads, and DMA are compared on the TILEPro64 processor

Emulate RSP
on TILEPro64 

Implement 
embedded 

benchmarks
ith RSP

Compare 
performance to 

cache-coherence 
d DMAwith RSP and DMA

M t i  TTILEP 64 t  C  d  • Matrix Transpose
• Two-dimensional 

FFT
• Matrix Multiply

• TILEPro64 supports 
Cache-coherence 
and DMA

• Additional memory 

• Compare speedup 
and load latency

• Matrix Multiply
• Bitonic Sort
• Convolution
• Floyd Steinberg 

Additional memory 
allocation modes let 
us emulate RSP

• Floyd-Steinberg 
Error Diffusion

• H.264 Encode
• Histogram
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Histogram



Speedups of RSP and cache-coherent benchmarks 
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RSP is outperforms threading with cache coherence for large 
numbers of cores

Speedup of RSP versus Cache Coherence for selected benchmarks
(higher is better)

ed
 o

f C
C

2.5

3
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significant benefit

• 5 RSP apps are 1.5x faster than CC for 64 cores
• RSP FFT is > 3x faster than CC for 64 cores
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RSP’s emphasis on locality results in low load latency 

Load latency of selected benchmarks on RSP versus Cache Coherence
(lower is better)(lower is better)
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Comparison of RSP, Threading, and DMA for two applications
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• RSP is faster than Threading and DMA due to fine emphasis on locality and fine-
grain communication
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• Conclusion



Conclusion

• Talk presents Remote Store Programming
– A programming model for multicore
– Uses familiar communication mechanisms
– Achieves high-performance through locality and fine-grain communication
– Requires incremental hardware support

• Conclusion:
– Threads and shared memory good performance and easy to use
– For large numbers of cores RSP can outperform threading because of greater localityg p g g y
– RSP is easier to use than DMA and slightly harder than Threads

• Anticipated use for RSP:
Can supplement threads and cache coherent shared memory on multicore– Can supplement threads and cache-coherent shared memory on multicore

• Most code uses standard threading and shared memory techniques
• Performance critical sections of code or applications use RSP for additional performance
• Gentle Slope to programming multicore
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