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Abstract
This work presents remote store programming (RSP), an

instance of the reflective memory model designed to be in-
crementally supportable on multicores that support loads
and stores. To demonstrate the value of RSP, its perfor-
mance is compared to that of both shared and distributed
memory approaches using the TILEPro64 multicore proces-
sor. RSP is shown to be as much as1.76× faster than dis-
tributed memory and over5× faster than shared memory.

Introduction

There are two dominant memory models for multiproces-
sors: shared memory (SM) and distributed memory (DM).
In the SM model, standard load and store instructions are
used to communicate and the hardware is responsible for
managing the transfer of data between physically separate
memories. The SM model is considered easy to use because
it employs the familiar load and store instructions for com-
munication. In the DM model, the hardware provides an
explicit communication primitive and it is the software’s re-
sponsibility to orchestrate communication. The DM model
is considered high-performance because it allows software
to control the physical location of data and ensure that pro-
cessors only access physically close data.

The reflective memory (RM) model combines features of
both SM and DM, supporting communication through stan-
dard load and store instructions while still allowing software
to control data locality [3]. The result is a programming
model that is easier to use than DM but with similar or bet-
ter performance.

This talk discusses remote store programming (RSP), an
instance of the RM model designed to be incrementally
achievable in multicores that support load and store instruc-
tions [2]. In RSP programs, processes have private address
spaces by default but can give other processes write access
to their local memory. Once a producer has write access to a
consumer’s memory, it communicates directly with the con-
sumer using standard store instructions that target remote
memory, hence the name “remote store programming.”

Hardware and OS support for RSP

To implement RSP, the hardware and system software
must provide the following mechanisms:

Allocation of remotely writable data. Processes must
be capable of allocating data that can be written by other
processes. This data should be both readable and writable
by the allocating process.

Store instructions that target remote data. Processes
may execute store instructions where the destination regis-
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ter specifies an address in remote memory. When executing
such a store, the core should not allocate a cache-line, but
forward the operation to the consumer where the data was
allocated. The forwarding is handled in hardware and re-
quires a message be sent to the consumer containing both
the datum and the address at which it is to be stored. The
consumer receives this message and handles it as it would if
the store was issued locally.

Support for managing memory consistency. After a
producer process writes data to remote memory, it needs
to signal the availability of that memory to the consumer.
To ensure correctness, the hardware must provide sequen-
tial consistency, or a memory fence operation so that the
software can ensure correct execution.

Synchronization instructions may read and write re-
mote data. RSP allows atomic synchronization operations,
such as test-and-set or fetch-and-add, to both read and write
remote data.

This set of features represents an incremental addition
to those required on any multicore. To support loads and
stores, a core must send a message to a memory controller
to handle cache misses. To support RSP, this capability is
augmented so that write misses to remotely allocated data
are forwarded not to the memory controller, but to the core
that allocated the data. The RSP implementation can use
the same network that communicates with the memory con-
troller. The additional hardware support required is logic
to determine whether to send a write miss to the memory
controller or to another core.

The RSP model

In an RSP program a consumer process allocates local
memory and then gives write permission to a remote pro-
ducer process. The RSP model has several distinctive char-
acteristics. First, it uses load and store instructions to com-
municate. Second, it provides no support for bulk transfers,
an omission designed to encourage programmers to store
data to remote memory as soon as it is produced. Third, the
model does not support remote loads or reads ensuring that
load instructions always target local, physically close mem-
ory and guaranteeing minimum load latency.

Given these characteristics, communication in the RSP
model is fine-grained and one-sided where data is pushed
from the producer to the consumer. Data is sent from the
registers of a producer to the cache of a consumer without
the overhead of buffering or copying. Such communication
does not require explicit scheduling for efficiency and it is
easily overlapped with computation. By allowing remote
stores but not remote loads, the model trades long store la-
tency for minimal load latency. Load latency is minimized
for two reasons: 1) loads are more common than stores and
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(a) 2D FFT
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(b) H.264 video encode

Figure 1: Performance comparison of shared memory, distributed memory, and RSP. (a) shows performance of the 2D FFT,
while (b) shows the performance of the H.264 encoder. All performance is normalized to that of cache-coherent shared
memory.

2) it is easier to tolerate store latency than load latency as
store-to-use time is typically much greater than load-to-use
time.

RSP performance

The performance of RSP is evaluated by emulating it
using the TILEPro64 processor [4]. This implementa-
tion demonstrates that the RSP paradigm can support high-
performance embedded multicore applications like digital
signal processing, video encoding and wireless communi-
cation. An RSP implementation of a 2D FFT achieves
a speedup of69.7× using 64 cores, an H.264 encoder
achieves a speedup of24.7× using 40 cores, while the RSP
implementation of the BDTI Communication Benchmark
(OFDM) achieves a speedup of54.1× using 56 cores [1]1.
In all cases, the speedups are calculated by comparing the
parallel performance to that of hand-optimized serial code.
RSP obtains these speedups because its fine-grained com-
munication can be completely overlapped with computa-
tion.

Additionally, the TILEPro64 supports a variety of mech-
anisms that allow comparison of remote store programming
to both shared and distributed memory applications. The
SM implementation exercises the TILEPro64’s directory-
based cache-coherence protocol, while the DM implemen-
tation makes use of the two-dimensional DMA engine. The
TILEPro64 allows emulation of RSP by supporting the allo-
cation ofhomedmemory. Such memory is shared supports
read/write access on the core which allocates it; however,
if a remote core access this memory, no cache-line is allo-
cated. Therefore, homed memory can be used to emulate
remotely writable memory if a producer does not attempt to
read from it.

The performance of each of the three models is compared

1Using RSP, the TILE64 processor achieved the highest compute per-
formance of any programmable processor on this benchmark.

for a 256 × 256 2D FFT and an H.264 encoder for high-
definition video. The relative performance of the models
is illustrated in Figure . Results show that RSP can achieve
over5× the performance of SM using sixty-four cores. This
speedup relative to shared memory is due to RSP’s empha-
sis on locality-of-reference, as RSP programs always access
physically close memory and minimize load latencies. RSP
programs also generate far less coherence traffic than SM
programs. In addition, RSP performance is comparable to
that of DM in the worst case and as much as1.76× better in
the best case. The best case performance advantage is due
to the fact that RSP requires less buffering and copying than
the DMA-based approach.

Significantly, RSP achieves this performance despite re-
quiring less hardware support than either the cache-coherent
shared memory or DMA approaches. Furthermore, RSP
programs are easier to write than DMA-based programs be-
cause RSP communication does not have to be explicitly
scheduled like DMA transfers.
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