
Implementation of 2Implementation of 2--D FFT on the Cell D FFT on the Cell
B db d E i A hit tB db d E i A hit tBroadband Engine ArchitectureBroadband Engine Architecture

William Lundgren (William Lundgren (wlundgren@gedae comwlundgren@gedae com Gedae)Gedae)William Lundgren (William Lundgren (wlundgren@gedae.comwlundgren@gedae.com, Gedae), , Gedae),
Kerry Barnes (Gedae), James Steed (Gedae)Kerry Barnes (Gedae), James Steed (Gedae)

HPEC 2009HPEC 2009

IntroductionIntroductionIntroductionIntroduction

Processing is either limited by memory or CPU bandwidthProcessing is either limited by memory or CPU bandwidth
–– Challenge is to achieve the practical limit of processingChallenge is to achieve the practical limit of processing
–– Large 2Large 2--D FFTs are limited by memory bandwidthD FFTs are limited by memory bandwidth

Automating details of implementation provides developer with Automating details of implementation provides developer with
more opportunity to optimize structure of algorithmmore opportunity to optimize structure of algorithm

Cell Broadband Engine is a good platform for studying efficient Cell Broadband Engine is a good platform for studying efficient
use of memory bandwidthuse of memory bandwidth
–– Data movements are exposed and can be controlledData movements are exposed and can be controlled–– Data movements are exposed and can be controlledData movements are exposed and can be controlled
–– Cache managers hide the data movementCache managers hide the data movement

I t l X86 & IBM P l tI t l X86 & IBM P l t L bL b TilTil ttIntel X86 & IBM Power processor clusters, Intel X86 & IBM Power processor clusters, LarrabeeLarrabee, , TileraTilera, etc. , etc.
have similar challengeshave similar challenges

22

Cell/B.E. Memory HierarchyCell/B.E. Memory HierarchyCell/B.E. Memory HierarchyCell/B.E. Memory Hierarchy

Each SPE core has a 256 Each SPE core has a 256 kBkB local storagelocal storage

SPE SPE SPE SPESPE SPE SPE SPE

Each Cell/B.E. chip has a large system memoryEach Cell/B.E. chip has a large system memory

Cell/B.E. Chip Cell/B.E. Chip
SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS
SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

EIB EIB

PPE

SYSMEM

Bridge

SYSMEM Duplicate or
heterogeneous

PPEBridge

33

heterogeneous
Subsystems

Effect of Tile Size on ThroughputEffect of Tile Size on Throughput

Throughput vs Tile Row Length

Effect of Tile Size on ThroughputEffect of Tile Size on Throughput

20

22.5

25

se
c)

12.5

15

17.5

2
4t (

G
by

te
s/

s #
Procs

5

7.5

10 8

Th
ro

ug
hp

ut

32 64 128 256 512 1024 2048 4096
0

2.5

T

Tile Row Length (Bytes)

(Times are measured within Gedae)

Limiting Resource is Memory Limiting Resource is Memory
B d idthB d idthBandwidthBandwidth

Simple algorithm: FFT, Transpose, FFTSimple algorithm: FFT, Transpose, FFT
–– Scales well to large matricesScales well to large matrices

Data must be moved into and out of memory 6 times for a total Data must be moved into and out of memory 6 times for a total
of of
–– 2*4*512*512*6 = 12.6e6 bytes2*4*512*512*6 = 12.6e6 bytes
–– 12.6e6/25.6e9 = 0.492 12.6e6/25.6e9 = 0.492 mSecmSec
-- Total flops = 5*512*log2(512) * 2 * 512 = 23.6e6Total flops = 5*512*log2(512) * 2 * 512 = 23.6e6p g ()p g ()
-- 23.6e6/204.8e9 = 0.115 23.6e6/204.8e9 = 0.115 mSecmSec
-- Clearly the limiting resource is memory IOClearly the limiting resource is memory IO

Matrices up to 512x512, a faster algorithm is possibleMatrices up to 512x512, a faster algorithm is possibleMatrices up to 512x512, a faster algorithm is possibleMatrices up to 512x512, a faster algorithm is possible
―― Reduces the memory IO to 2 transfers into and 2 out of system Reduces the memory IO to 2 transfers into and 2 out of system

memorymemory
―― The expected is time based on the practical memory IO bandwidth The expected is time based on the practical memory IO bandwidth p p yp p y

shown on the previous chart is 62 shown on the previous chart is 62 gflopsgflops

55

Overview of 4 Phase AlgorithmOverview of 4 Phase AlgorithmOverview of 4 Phase AlgorithmOverview of 4 Phase Algorithm

Repeat C1 timesRepeat C1 times
–– Move C2/Move C2/ProcsProcs columns to local storagecolumns to local storage
–– FFTFFT
–– Transpose C2/Transpose C2/ProcsProcs * R2/* R2/ProcsProcs matrix tiles and move to system matrix tiles and move to system

memorymemory
Repeat R1 timesRepeat R1 times
–– Move R2/Move R2/ProcsProcs * C2/* C2/ProcsProcs tiles to local storagetiles to local storage
–– FFTFFT
–– Move R2/Move R2/ProcsProcs columns to system memorycolumns to system memory

66

Optimization of Data MovementOptimization of Data MovementOptimization of Data MovementOptimization of Data Movement

We know that to achieve optimal performance we must use We know that to achieve optimal performance we must use
buffers with row length >= 2048 bytesbuffers with row length >= 2048 bytes
Complexity beyond the reach of many programmers Complexity beyond the reach of many programmers
Approach:Approach:

Use Idea Language (Copyright Gedae, Inc.) to design the data organization Use Idea Language (Copyright Gedae, Inc.) to design the data organization
and movement among memoriesand movement among memories
Implement on Cell processor using Gedae DF Implement on Cell processor using Gedae DF
Future implementation will be fully automated from Idea designFuture implementation will be fully automated from Idea designFuture implementation will be fully automated from Idea designFuture implementation will be fully automated from Idea design

The following charts show the algorithm design using the Idea The following charts show the algorithm design using the Idea
Language and implementation and diagramsLanguage and implementation and diagrams

Multicores require the introduction of fundamentally new automation.

77

q y

Row and Column PartitioningRow and Column PartitioningRow and Column PartitioningRow and Column Partitioning

ProcsProcs = number of processors (8)= number of processors (8)
–– Slowest moving row and column partition indexSlowest moving row and column partition index

Row decompositionRow decomposition
–– R1 = Slow moving row partition index (4)R1 = Slow moving row partition index (4)g p ()g p ()
–– R2 = Second middle moving row partition index (8)R2 = Second middle moving row partition index (8)
–– R3 = Fast moving row partition index (2)R3 = Fast moving row partition index (2)
–– Row size = Row size = ProcsProcs * R1 * R2 * R3 = 512* R1 * R2 * R3 = 512

Column DecompositionColumn Decomposition
–– C1 = Slow moving column partition index (4)C1 = Slow moving column partition index (4)
–– C2 = Second middle moving column partition index (8)C2 = Second middle moving column partition index (8)C2 Second middle moving column partition index (8)C2 Second middle moving column partition index (8)
–– C3 = Fast moving column partition index (2)C3 = Fast moving column partition index (2)
–– Column size = Column size = ProcsProcs * C1 * C2 * C3 = 512* C1 * C2 * C3 = 512

88

Notation Notation –– Ranges and Comma Ranges and Comma
N t tiN t tiNotationNotation

range r1 = R1;range r1 = R1;
–– is an is an iteratoriterator that takes on the values that takes on the values 0, 1, … R10, 1, … R1--1 1
–– #r1 #r1 equals equals R1,R1, the size of the range variablethe size of the range variable

We define ranges as:We define ranges as:
–– range range rprp = = ProcsProcs; range r1 = R1; ; range r1 = R1;

range r2 = R2; range r3 = R3;range r2 = R2; range r3 = R3;
–– range cp = range cp = ProcsProcs; range r1 = R1; ; range r1 = R1;

range r2 = R2; range r3 = R3;range r2 = R2; range r3 = R3;
–– range range iqiq = 2; /* real, = 2; /* real, imagimag */*/

W d fi t tiW d fi t tiWe define comma notation as:We define comma notation as:
–– x[rp,r1] x[rp,r1]

is a vector of size is a vector of size ##rprp * #r1* #r1 and equivalent toand equivalent to
[[* # 1 1]* # 1 1]x[x[rprp * #r1 + r1]* #r1 + r1]

99

Input MatrixInput MatrixInput MatrixInput Matrix

Input matrix is 512 by 512Input matrix is 512 by 512
–– range r = R; range c = C;range r = R; range c = C;

r r rp,r1,r2,r3rp,r1,r2,r3
c c cp,c1,c2,c3cp,c1,c2,c3

–– range range iqiq = 2 = 2
Split complex (re, Split complex (re, imim))

–– x[x[iqiq][r][c]][r][c]

512x512
512x512

1010

Distribution of Data to SPEsDistribution of Data to SPEsDistribution of Data to SPEsDistribution of Data to SPEs

Decompose the input matrix by row for processing on 8 SPEsDecompose the input matrix by row for processing on 8 SPEs
[[rprp]x1[]x1[iqiq][r1,r2,r3][c] = x[][r1,r2,r3][c] = x[iqiq][rp,r1,r2,r3][c]][rp,r1,r2,r3][c]

SPE 0

System Memory

SPE 0

SPE 1

SPE 2

SPE 0

SPE 1

SPE 2
SPE 2

SPE 3

SPE 4

SPE 3

SPE 4
SPE 4

SPE 5

SPE 6

SPE 5

SPE 6

SPE 7
1111

SPE 7

Stream Stream SubmatricesSubmatrices from from
S t M i t SPES t M i t SPESystem Memory into SPE System Memory into SPE

Consider 1 SPEConsider 1 SPE
Stream submatrices with R3 (2) rows from system memory into Stream submatrices with R3 (2) rows from system memory into
local store of the SPE. Gedae will use list DMA to move the data local store of the SPE. Gedae will use list DMA to move the data
[rp]x2[iq][r3][c](r1,r2) = [rp]x1[iq][r1,r2,r3][c][rp]x2[iq][r3][c](r1,r2) = [rp]x1[iq][r1,r2,r3][c]

System Memory
Local Storage

1212

FFT ProcessingFFT ProcessingFFT Processing FFT Processing

Process Submatrices by Computing FFT on Each RowProcess Submatrices by Computing FFT on Each Row
–– [rp]x3[r3][iq][c]= fft([rp]x2[iq][r3])[rp]x3[r3][iq][c]= fft([rp]x2[iq][r3])
–– Since theSince the [c] [c] dimension is dropped from the argument to the fft dimension is dropped from the argument to the fft

function it is being passed a complete row (vector). function it is being passed a complete row (vector).
–– Stream indices are dropped. The stream processing is Stream indices are dropped. The stream processing is

automatically implemented by Gedae.automatically implemented by Gedae.

Each sub matrix contains 2 rows of real and 2 rows of imaginary dataEach sub matrix contains 2 rows of real and 2 rows of imaginary data.

N ti th t th l d i i d t h b i t l d t k h

FFT Processing

1313

Notice that the real and imaginary data has been interleaved to keep each
submatrix in contiguous memory.

Create Buffer for Streaming Tiles Create Buffer for Streaming Tiles
t S t M Ph 1t S t M Ph 1to System Memory Phase 1to System Memory Phase 1

Collect R1 submatrices into a larger buffer with R2*R3 (16) rowsCollect R1 submatrices into a larger buffer with R2*R3 (16) rows
–– [rp]x4[r2,r3][iq][c] = [rp]x3[r3][iq][c](r2) [rp]x4[r2,r3][iq][c] = [rp]x3[r3][iq][c](r2)
–– This process is completed This process is completed r1r1 (4) times to process the full 64 rows.(4) times to process the full 64 rows.

St D t I t B ffStream Data Into Buffer

There are now R2*R3 (16) rows in memory.
… …

1414

Transpose Tiles to Contiguous Transpose Tiles to Contiguous
MMMemoryMemory

A tile of real and a tile of imaginary are extracted and transposed A tile of real and a tile of imaginary are extracted and transposed
to continuous memoryto continuous memory

[[rprp]x5[]x5[iqiq][c2,c3][r2,r3](cp,c1) = [][c2,c3][r2,r3](cp,c1) = [rprp]x4[r2,r3][]x4[r2,r3][iqiq][cp,c1,c2,c3]][cp,c1,c2,c3]

–– This process is completed This process is completed r1r1 (4) times to process the full 64 rows.(4) times to process the full 64 rows.

Transpose Data Into Stream of tiles

… …

… … … ……

1515

Now there is a stream of Cp*C1 (32) tiles. Each tile
is IQ by R2*R3 by C2*C3 (2x16x16) data elements.

Stream Tiles into System Memory Stream Tiles into System Memory
Ph 1Ph 1Phase 1Phase 1

Stream tiles into a buffer in system memory. Each row contains Stream tiles into a buffer in system memory. Each row contains
all the tiles assigned to that processor.all the tiles assigned to that processor.
[[rprp]x6[r1,cp,c1][]x6[r1,cp,c1][iqiq][c2,c3] = [][c2,c3] = [rprp]x5[]x5[iqiq][c2,c3][r2,r3](r1,cp,c1)][c2,c3][r2,r3](r1,cp,c1)

–– The The r1r1 iterations were created on the initial streaming of iterations were created on the initial streaming of r1,r2r1,r2
b ib isubmatricessubmatrices..

… …

… …Tile 1 Tile R1*Cp*C1-1

… …

Stream of tiles into
l b ff i

… … …
… …

…

larger buffer in
system memory

… …

…

1616

Now there is a buffer of R1*Cp*C1 (128) tiles each IQ by R2*R3 by C2*C3

Stream Tile into System Memory Stream Tile into System Memory
Ph 2Ph 2Phase 2Phase 2

Collect buffers from each SPE into full sized Collect buffers from each SPE into full sized
buffer in system memory.buffer in system memory.
–– x7[rp,r1,cp,c1][x7[rp,r1,cp,c1][iqiq][c2,c3][r2,r3] =][c2,c3][r2,r3] =

[[rprp]x6[r1,cp,c1][]x6[r1,cp,c1][iqiq][c2,c3][r2,r3]][c2,c3][r2,r3]

…

–– The larger matrix is created by Gedae and the The larger matrix is created by Gedae and the
pointers passed back to the box on the SPE that is pointers passed back to the box on the SPE that is
DMA’ngDMA’ng the data into system memorythe data into system memory …

…

…
…

… … …

Collect tiles into
larger buffer in
system memory …

… … …

SPE 0 SPE 1 SPE 7

1717

The buffer is now Rp*R1*Cp*C1 (1024) tiles.
Each tile is IQ by R2*R3 by C2*C3

Stream Tiles into Local StoreStream Tiles into Local StoreStream Tiles into Local StoreStream Tiles into Local Store

Extract tiles from system memory to create 16 full Extract tiles from system memory to create 16 full
sized columns (r index) in local store.sized columns (r index) in local store.
[cp]x8[[cp]x8[iqiq][c2,c3][r2,r3](c1,rp,r1) =][c2,c3][r2,r3](c1,rp,r1) =

x7[rp,r1,cp,c1][x7[rp,r1,cp,c1][iqiq][c2,c3][r1,r2];][c2,c3][r1,r2];

…

–– All SPEs have access to full buffer to extract data in All SPEs have access to full buffer to extract data in
a regular but scattered pattern. a regular but scattered pattern.

… SPE 1

Collect tiles into
local store from …

…
…

…

…

SPE 7

The buffer in local store is now Rp*R1 (32) tiles.
Q C *C * ()

regular but
scattered locations
in system memory

…

…

…SPE 0

Each tile is IQ by C2*C3 by R2*R3 (2x16x16). This
scheme is repeated C1 (4) times on each SPE.

Stream Tiles into BufferStream Tiles into BufferStream Tiles into BufferStream Tiles into Buffer

Stream tiles into a buffer in system memory. Each row contains Stream tiles into a buffer in system memory. Each row contains
all the tiles assigned to that processor.all the tiles assigned to that processor.
[cp]x9[[cp]x9[iqiq][c2,c3][rp,r1,r2,r3](c1) =][c2,c3][rp,r1,r2,r3](c1) =

[cp]x8[[cp]x8[iqiq][c2,c3][r2,r3](c1,rp,r1)][c2,c3][r2,r3](c1,rp,r1)

ff

…

–– The The r1r1 iterations were created on the initial streaming of iterations were created on the initial streaming of r1,r2r1,r2
submatricessubmatrices..

… … … … …

…

Stream of tiles into

…
… … …

…
… …

Stream of tiles into
full length column

(r index) buffer with
a tile copy.

1919

Now there is a buffer of R1*Cp*C1 (128) tiles each IQ by R2*R3 by C2*C3

Process Columns with FFTProcess Columns with FFTProcess Columns with FFTProcess Columns with FFT

Stream 2 rows into an FFT function that places the real and Stream 2 rows into an FFT function that places the real and
imaginary data into separate buffers. This allows reconstructing imaginary data into separate buffers. This allows reconstructing
a split complex matrix in system memory.a split complex matrix in system memory.
[cp]x10[[cp]x10[iqiq][c3][r](c2) =][c3][r](c2) = fftfft([cp]x9[([cp]x9[iqiq][c2,c3]);][c2,c3]);

…

Stream 2 rows of
real and imaginary

data into FFT
function Place data

…
2020

function. Place data
into separate

buffers on output.

Create Buffer for Streaming Tiles Create Buffer for Streaming Tiles
t S t Mt S t Mto System Memoryto System Memory

Collect R2 Collect R2 submatricessubmatrices into a larger buffer with R2*R3 (16) rowsinto a larger buffer with R2*R3 (16) rows
–– [p]x11[[p]x11[iqiq][c2,c3][r] = [cp]x10[][c2,c3][r] = [cp]x10[iqiq][c3][r](c2)][c3][r](c2)
–– This process is completed This process is completed c1c1 (4) times to process the full 64 rows.(4) times to process the full 64 rows.

St D t I t B ffStream Data Into Buffer

There are now R2*R3 (16) rows in memory.
… …

2121

Create Buffer for Streaming Tiles Create Buffer for Streaming Tiles
t S t Mt S t Mto System Memoryto System Memory

Collect R2 Collect R2 submatricessubmatrices into a larger buffer with R2*R3 (16) rowsinto a larger buffer with R2*R3 (16) rows
–– [p]x12[[p]x12[iqiq][c1,c2,c3][r] = [p]x11[][c1,c2,c3][r] = [p]x11[iqiq][c2,c3][r](c1)][c2,c3][r](c1)

… …

Stream submatrices into buffer

… …

2222

There are now 2 buffers of C1*C2*C3 (128) rows of length R (512) in
system memory.

Distribution of Data to SPEsDistribution of Data to SPEsDistribution of Data to SPEsDistribution of Data to SPEs

Decompose the input matrix by row for processing on 8 SPEsDecompose the input matrix by row for processing on 8 SPEs
x13[x13[iqiq][cp,c1,c2,c3][r] = [cp]x12[][cp,c1,c2,c3][r] = [cp]x12[iqiq][c1,c2,c3][r]][c1,c2,c3][r]

SPE 0

System Memory

Only real plane represented in pictureSPE 0

SPE 1

SPE 2

Only real plane represented in picture.

Each SPE will produce
C1*C2*C3 = 64

rows
SPE 3

SPE 4

rows.

SPE 5

SPE 6

2323

SPE 7

Output MatrixOutput MatrixOutput MatrixOutput Matrix

Output matrix is 512 by 512Output matrix is 512 by 512
–– y[y[iqiq][c][r]][c][r]

512x512
512x512

2424

ResultsResultsResultsResults

Two days to design algorithm using Idea languageTwo days to design algorithm using Idea language
–– 66 lines of code66 lines of code

One day to implement on CellOne day to implement on Cell
–– 20 kernels, each with 2020 kernels, each with 20--50 lines of code50 lines of code,,
–– 14 parameter expressions14 parameter expressions
–– Already large savings in amount of code over difficult handcodingAlready large savings in amount of code over difficult handcoding
–– Future automation will eliminate coding at the kernel level Future automation will eliminate coding at the kernel level gg

altogetheraltogether
Achieved 57* gflops out of the theoretical maximum 62 gflopsAchieved 57* gflops out of the theoretical maximum 62 gflops

* Measured on CAB Board at 2.8 ghz adjusted to 3.2 ghz. The measure algorithm is * Measured on CAB Board at 2.8 ghz adjusted to 3.2 ghz. The measure algorithm is
slightly different and expected to increase to 60 gflops.slightly different and expected to increase to 60 gflops.s g t y d e e t a d e pected to c ease to 60 g opss g t y d e e t a d e pected to c ease to 60 g ops

2525

Gedae StatusGedae StatusGedae StatusGedae Status

12 months into an 18/20 month repackaging of Gedae12 months into an 18/20 month repackaging of Gedae
–– Introduced algebraic features of the Idea language used to design Introduced algebraic features of the Idea language used to design

this algorithmthis algorithm
–– Completed support for hierarchical memoryCompleted support for hierarchical memory
–– Embarking now on code overlays and large scale heterogeneous Embarking now on code overlays and large scale heterogeneous

systemssystems
–– Will reduce memory footprint to enable 1024 x 1024 2D FFTWill reduce memory footprint to enable 1024 x 1024 2D FFT

2626

