TN
Gedae

Implementation of 2-D FFT on the Cell
Broadband Engine Architecture

William Lundgren (wlundgren@gedae.com, Gedae),
Kerry Barnes (Gedae), James Steed (Gedae)

HPEC 2009




Introduction T T
Gedae

Processing is either limited by memory or CPU bandwidth
— Challenge is to achieve the practical limit of processing
— Large 2-D FFTs are limited by memory bandwidth

Automating details of implementation provides developer with
more opportunity to optimize structure of algorithm

Cell Broadband Engine is a good platform for studying efficient
use of memory bandwidth

— Data movements are exposed and can be controlled
— Cache managers hide the data movement

Intel X86 & IBM Power processor clusters, Larrabee, Tilera, etc.
have similar challenges




Cell/B.E. Memory Hierarchy

8 Each SPE core has a 256 kB local storage
8 Each Cell/B.E. chip has a large system memory

Cell/B.E. Chip Cell/B.E. Chip

SPE

SPE

SPE

SPE

SPE

SPE

SPE

SPE

SPE

SPE

SPE

SPE

PPE

Duplicate or
heterogeneous
Subsystems

3




Effect of Tile Size on Throughput

Throughput vs Tile Row Length

N
o

17.5

—_
)

A ]
o

N
o

%
5/125
g
g
=

&)

\

o i
W
N

128 256 5% 2 1 624 20‘48 4096
Tile Row Length (Bytes)

(Times are measured within Gedae)




Limiting Resource is Memory s

Simple algorithm: FFT, Transpose, FFT
— Scales well to large matrices
Data must be moved into and out of memory 6 times for a total
of
— 2*4*512*512*6 = 12.6e6 bytes
— 12.6e6/25.6e9 = 0.492 mSec
- Total flops = 5*512*l0g2(512) * 2 * 512 = 23.6e6
- 23.6e6/204.8e9 = 0.115 mSec
- Clearly the limiting resource is memory IO
Matrices up to 512x512, a faster algorithm is possible

— Reduces the memory IO to 2 transfers into and 2 out of system
memory

— The expected is time based on the practical memory 10 bandwidth
shown on the previous chart is 62 gflops




Overview of 4 Phase Algorithm

Repeat C1 times
— Move C2/Procs columns to local storage
— FFT

— Transpose C2/Procs * R2/Procs matrix tiles and move to system
memory

Repeat R1 times

— Move R2/Procs * C2/Procs tiles to local storage
— FFT

— Move R2/Procs columns to system memory




Optimization of Data Movement @® @@
Gedae

We know that to achieve optimal performance we must use
buffers with row length >= 2048 bytes

Complexity beyond the reach of many programmers
Approach:

1 Use ldea Language (Copyright Gedae, Inc.) to design the data organization
and movement among memaories

1 Implement on Cell processor using Gedae DF
2 Future implementation will be fully automated from Idea design

The following charts show the algorithm design using the Idea
Language and implementation and diagrams

Multicores require the introduction of fundamentally new automation.




Row and Column Partitioning

% Procs = number of processors (8)
— Slowest moving row and column partition index

i Row decomposition
— R1 = Slow moving row partition index (4)
— R2 = Second middle moving row partition index (8)
— R3 = Fast moving row partition index (2)
— Row size = Procs *R1*R2*R3 =512
8 Column Decomposition
C1 = Slow moving column partition index (4)
C2 = Second middle moving column partition index (8)
C3 = Fast moving column partition index (2)
Column size =Procs *C1 *C2*C3 =512




Notation — Ranges and Comma
Notation

i range rl = R1,;
— IS an iterator that takes on the values 0, 1, .. R1-1
— #rl equals R1, the size of the range variable

I We define ranges as:
range rp Procs; range rl1l = R1;
range r2 R2; range r3 = R3;
range cp Procs; range rl = R1;
range r2 R2; range r3 = R3;
range iq 2; /* real, 1mag */
2 We define comma notation as:
— X[rp,ri]
IS a vector of size #rp * #rl and equivalent to
X[rp * #rl1 + rl1]




Input Matrix

1 Input matrix is 512 by 512
— range r = R; range c = C;
ir = rp,rli,r2,r3
1ic = cp,cl,c2,c3
— range 1q = 2
1 Split complex (re, im)

— x[ialLrlLc]

512x512




Distribution of Data to SPES :0 o0
Gedae

8 Decompose the input matrix by row for processing on 8 SPEs
[rpdx1[iqllrl,r2,r3][c] = x[iq]Lrp,rl,r2,r3][c]
System Memory




ream matri from @
Stream Submatrices fro s

System Memory into SPE Gedae

1 Consider 1 SPE

8 Stream submatrices with R3 (2) rows from system memory into
local store of the SPE. Gedae will use list DMA to move the data

[rpIx2[iq][r3][c](rl,r2) = [rplx1[iqllrl,r2,r3][c]

System Memory

Local Storage




FFT Processing o0 00
Gedae

% Process Submatrices by Computing FFT on Each Row
— [rpdx3[r3]1Liqllc]= ffe(Lrplx2[iqllr3])

— Since the [c] dimension is dropped from the argument to the fft
function it is being passed a complete row (vector).

— Stream indices are dropped. The stream processing is
automatically implemented by Gedae.

Each sub matrix contains 2 rows of real and 2 rows of imaginary data.

\ 7 FFT Processing

Notice that the real and imaginary data has been interleaved to keep each
submatrix in contiguous memory.




\ - O
Create Buffer for Streaming Tiles @ =

to System Memory Phase 1 Gedae

1 Collect R1 submatrices into a larger buffer with R2*R3 (16) rows
— [rpIx4lr2,r3]1[1allc]l = [rplx3[r3]1Liallc]l(r2)

— This process is completed rl1 (4) times to process the full 64 rows.

There are now R2*R3 (16) rows in memory.




Transpose Tiles to Contiguous :“ @
P J 90 00

Memory Gedae

1 Atile of real and atile of imaginary are extracted and transposed

to continuous memory
[rpIx5Liagl[c2,c3]1[r2,r3](cp,cl) = [rplx4[r2,r3][iq][cp.cl,c2,c3]
— This process is completed rl1 (4) times to process the full 64 rows.

Transpose Data Into Stream of tiles

Now there is a stream of Cp*C1 (32) tiles. Each tile
Is 1Q by R2*R3 by C2*C3 (2x16x16) data elements.




Stream Tiles into System Memory @

Phase 1 (.i:d;:

8 Stream tiles into a buffer in system memory. Each row contains
all the tiles assigned to that processor.
[rpIx6[rl,cp,cllliqllc2,c3] = [rplx5[iqllc2,c3][r2,r3](rl,cp,cl)
— The rliterations were created on the initial streaming of r1,r2

submatrices.

Tile 1 Tile R1*Cp*C1-1 |III IIIII I
B R B R

Stream of tiles into
larger buffer in
system memory

Now there is a buffer of R1*Cp*C1 (128) tiles each 1Q by R2*R3 by C2*C3




I 000 ©
Stream Tile into System Memory @

Phase 2 (.i:d;:

1 Collect buffers from each SPE into full sized
buffer in system memory.
— X7[rp,rl,cp,cl]liq][c2,c3][r2,r3] =
[rp]x6[rl,cp,cl][iq][c2,c3][r2,r3]
— The larger matrix is created by Gedae and the

pointers passed back to the box on the SPE that is
DMA’ng the data into system memory

>

Collect tiles into

S larger buffer in
PEO SPE 1 SPE 7 system memory

The buffer is now Rp*R1*Cp*C1 (1024) tiles.
Each tile is 1Q by R2*R3 by C2*C3




Stream Tiles Iinto Local Store o0 00
Gedae

1 Extract tiles from system memory to create 16 full
sized columns (r index) in local store.
[cp]x8[1q][c2,c3][r2,r3](cl,rp,rl) =

X7[rp,rl,cp,cl]l[iq]l[c2,c3][rl1,r2];
— All SPEs have access to full buffer to extract data in
a regular but scattered pattern.

SPE1

>

Collect tiles into
local store from
regular but SPE O
scattered locations
in system memory

The buffer in local store is now Rp*R1 (32) tiles.
Each tile is 1Q by C2*C3 by R2*R3 (2x16x16). This
scheme is repeated C1 (4) times on each SPE.




Stream Tiles into Buffer o0 00
Gedae

8 Stream tiles into a buffer in system memory. Each row contains
all the tiles assigned to that processor.
[cp]Ix9[iq][c2,c3][rp,rl,r2,r3](cl) =
[cp]x8[iq][c2,c3][r2,r3](cl,rp,rl)
— The rliterations were created on the initial streaming of r1,r2
submatrices.

Stream of tiles into

full length column

(r index) buffer with
a tile copy.

Now there is a buffer of R1*Cp*C1 (128) tiles each 1Q by R2*R3 by C2*C3




Process Columns with FFT o0 00
Gedae

1 Stream 2 rows into an FFT function that places the real and
Imaginary data into separate buffers. This allows reconstructing
a split complex matrix in system memory.

[cp1x10[1ql[c3][r](c2) = ffe([cplx9Liq]l[c2,c3]);

>

Stream 2 rows of
real and imaginary
data into FFT
function. Place data
Into separate
buffers on output.




\ - O
Create Buffer for Streaming Tiles 8 =

to System Memory Gedae

1 Collect R2 submatrices into a larger buffer with R2*R3 (16) rows
— [pIx11[1q][c2,c3][r] = [cplx10[iql[c3]Lr]l(c2)

— This process is completed cl (4) times to process the full 64 rows.

Stream Data Into Buffer

€
€

There are now R2*R3 (16) rows in memory.




\ - O
Create Buffer for Streaming Tiles 8 =

to System Memory Gedae

i Collect R2 submatrices into a larger buffer with R2*R3 (16) rows
— [p1x12[iq]l[cl,c2,c3][r] = [p1x11[iq]lc2,c3]1Lrl(cl)

¥ Stream submatrices into buffer ¥

There are now 2 buffers of C1*C2*C3 (128) rows of length R (512) in
system memory.




Distribution of Data to SPES :0 o0
Gedae

8 Decompose the input matrix by row for processing on 8 SPEs
x13[1q][cp,cl,c2,c3]Ir] = [cplx12[iqg][cl,c2,c3][r]
System Memory

Only real plane represented in picture.

Each SPE will produce
C1*C2*C3 =64
rows.




Output Matrix

1 Output matrix is 512 by 512
— yliallcllr]

512x512




Results

i Two days to design algorithm using Idea language
— 66 lines of code
8 One day to implement on Cell
— 20 kernels, each with 20-50 lines of code
— 14 parameter expressions
— Already large savings in amount of code over difficult handcoding

— Future automation will eliminate coding at the kernel level
altogether

1 Achieved 57* gflops out of the theoretical maximum 62 gflops

* Measured on CAB Board at 2.8 ghz adjusted to 3.2 ghz. The measure algorithm is
slightly different and expected to increase to 60 gflops.




Gedae Status :0 o0
Gedae

18 12 months into an 18/20 month repackaging of Gedae

Introduced algebraic features of the Idea language used to design
this algorithm

Completed support for hierarchical memory

Embarking now on code overlays and large scale heterogeneous
systems

Will reduce memory footprint to enable 1024 x 1024 2D FFT




