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Introduction 
The bandwidth between local fast memory and remote slow 
memory is a major roadblock in achieving high 
performance in software from modern multicore hardware.  
Careful data flow planning and organization must be done 
to make sure data arrives just as it is ready to be processed, 
overlapping communication and processing to maintain 
throughput.  The Cell Broadband Engine (Cell/B.E.) 
processor provides a template for these programming 
concerns.  Many other architectures, from cluster 
computing with Intel or IBM Power processors to the 
upcoming Intel Larrabee GPGPU (general processing 
GPU), create similar challenges to the programmer.  To 
illustrate the data flow planning required to achieve near 
optimal performance on these modern hierarchical memory 
architectures, we investigate the implementation of a 2-D 
Fast Fourier Transform (FFT) on the Cell/B.E. processor.  
The Gedae language and compiler is used to quickly 
translate data flow strategies into efficient Cell/B.E. 
implementations. 

 

Cell Broadband Engine and its Transfer 
Limitations 
The Cell/B.E. processor has 8 identical Synergistic 
Processing Elements (SPE) alongside a Power Processing 
Element (PPE).  Each SPE has its own 256 kB local store 
(LS) and DMA engine as shown in Figure 1.   Larger 
system memory is available via a memory controller with a 
bandwidth of 25.6 GB/s – much less than the high speed 
Element Interconnect Bus (EIB).  Each SPE is capable of 
processing 25.6 GFLOPS when running at 3.2 GHz for an 
aggregate speed of 204.8 GFLOPS.  When processing large 
data sets, data is often stripmined from the system memory.  
In these situations the bandwidth over the memory 
controller quickly becomes a bottleneck to the processing 
speed.   

While system memory is outside of the SPEs’ memory 
space, the SPE can transfer data from system memory using 
a direct memory access (DMA) API to put or get memory 
in the unmapped address space.  The Cell Software 
Development Kit (Cell SDK) supports both vanilla and list 
DMA transfers.  Vanilla DMA transfers transfer contiguous 
off-chip memory to contiguous on-chip memory.  List 
DMA transfers transfer tiles to/from system memory 
from/to contiguous on-chip memory where a tile is defined 
as a submatrix of a larger data set with N contiguous 
elements per row and M elements between rows such that 
M>N. 

To efficiently use these DMA transfers, several design 
considerations must be taken into account.  There is a 
boundary size of 16 bytes on all transfers.  The EIB has a 
width of 128 bytes, and it follows that the contiguous data 

(including elements in a tile’s row) should be at least 128 
bytes.  Additional experimentation was done to stress the 
memory controller bandwidth and  determine the optimal 
transfer size, and the row length of 2048 bytes was found to 
be best, offering 4x improvement over 128 byte row size, as 
shown in Figure 2. 

 
Figure 1 – The current Cell/B.E. processor combines the PPE 
with 8 SPEs.  The memory controller often is a bottleneck. 

 
Figure 2 – Maximum throughput over the memory controller 
is achieved when DMA list row sizes are at least 2048 bytes. 

Algorithms 
The 2-D FFT is implemented on the Cell Broadband Engine 
architecture.  We consider the data size 512x512 and larger 
– the data is too large to fit in a single SPE’s local storage, 
and it is too large to fit in the aggregate local storage.  Data 
must be stripmined from system memory, including 
intermediate stages (transposes) in the algorithm.  We 
present two algorithms that can accommodate these sizes – 
a three phase algorithm and a four phase algorithm.  The 
three phase algorithm can accommodate larger matrices at 
the cost of more transfers to and from system memory. 

Let P be the number of processors, R*C be the input matrix 
size, and the matrix be divided into tiles such that 
R=R1*R2 and C=C1*C2, i.e., R1*C1 tiles of size R2*C2. 



The 3 phase algorithm is 

• Perform the FFT on C/P stripmined columns of size R 
into and out of system memory 

• Perform the transpose on R1*C1/P tiles of size R2*C2 
into and out of system memory 

• Perform the FFT on R/P stripmined columns of size C 
into and out of system memory. 

 
The 3 phase algorithm requires 6 transfers to and from 
system memory – 4 vanilla DMA transfers and 2 list DMA 
transfers.  The 4 phase algorithm can only be performed on 
matrices up to 512x512, but it reduces the number of 
transfers to and from system memory.  The algorithm is 

• Repeat C1 times 
o Perform the FFT on C2/p stripmined columns 

from system memory to local storage 
o Stripmine C2/P*R2/P tiles from the FFT result in 

local storage back to system memory 
• Repeat R1 times 

o Stripmine R2/P*C2/P tiles out of system memory 
to local storage 

o Perform the FFT and stripmine the R2/P columns 
back into system memory 

 
The 4 phase algorithm requires only 4 transfers to and from 
system memory – 2 vanilla DMA transfers and 2 list DMA 
transfers.  
 
With both algorithms, the DMA work overlaps with the 
work of the transpose and the FFT through the use of 
double buffered reads and writes to system memory. 

The goal of reduction in total number of transfers adds an 
additional design requirement when considering the 
complex data storage type.  The most efficient kernel for 
performing an FFT on the SPE’s ALU with VMX 
instruction set uses the split complex data type, i.e., the real 
and imaginary buffers are stored separately, not interleaved.  
Transferring two buffers to and from system memory adds 
overhead, so the buffers are allocated adjacently.  This 
design allows bigger more efficient transfers with half of 
the DMA kick-off overhead.  However, this consideration 
must be addressed when transposing the data.   

Performance and Conclusions 
The Gedae language and compiler are used to achieve high 
performance with minimal development time.  The 
language allows for direct specification of the tiling of large 
matrices.  The compiler automates a bare metal 
implementation of the DMA and DMA list accesses.  The 
runtime components are autocoded to introduce zero 
overhead to the execution time of the algorithms.  
Additionally, Cell/B.E.-specific optimization strategies are 
automatically incorporated, such as the use of huge TLB 
pages to optimize memory-to-memory IPC and the use of 
optimized vector routines for the FFT and transpose 
operations. 

The upper bound on performance is dependent on the 
transfer rate over the system memory controller.  The 
theoretical bandwidth limit is 25.6 GB/s.  As shown in 
Figure 2, the maximum we have achieved in the laboratory 
while simultaneously using all 8 SPEs is 22 GB/s.  We use 
the equation 10*N2*log2N to compute the number of 
FLOPS for the 2-D FFT algorithm.  Assuming a 25.6 GB/s 
bandwidth, the upper bound is 72 GFLOPS.  Assuming a 22 
GB/s bandwidth, the upper bound is 62 GFLOPS.  For the 
current implementation we are measuring 51.5 GFLOPS for 
the four phase algorithm, which equates to an 18.3 GB/s 
sustained bandwidth over the memory controller.  A Trace 
Table of this execution is shown in Figure 3.  We have 
identified several additional optimizations that will be 
incorporated and announced at the conference to bring the 
performance close to the theoretical max. 

Modern chips add more coprocessors with wider vector 
ALUs offering great promise of high throughput.  As the 
chips provide more FLOPS, the programming challenge 
moves towards keeping the pipelines sated with data.  
Gedae provides a powerful platform for programming and 
debugging these bandwidth issues. 

 
Figure 3 – Execution trace in the Gedae trace table shows the 
loading of the 8 processors and the staging of the 4 phase 
algorithm – get, row FFT, corner turn, column FFT, put. 
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