
Implementation of 2-D FFT on the Cell Broadband Engine Architecture
Kerry Barnes (kbarnes@gedae.com), William Lundgren (wlundgren@gedae.com), James Steed (jsteed@gedae.com)

Gedae, Inc., 1247 N. Church St., Suite 5, Moorestown, NJ 08057

Introduction
The bandwidth between local fast memory and remote slow
memory is a major roadblock in achieving high
performance in software from modern multicore hardware.
Careful data flow planning and organization must be done
to make sure data arrives just as it is ready to be processed,
overlapping communication and processing to maintain
throughput. The Cell Broadband Engine (Cell/B.E.)
processor provides a template for these programming
concerns. Many other architectures, from cluster
computing with Intel or IBM Power processors to the
upcoming Intel Larrabee GPGPU (general processing
GPU), create similar challenges to the programmer. To
illustrate the data flow planning required to achieve near
optimal performance on these modern hierarchical memory
architectures, we investigate the implementation of a 2-D
Fast Fourier Transform (FFT) on the Cell/B.E. processor.
The Gedae language and compiler is used to quickly
translate data flow strategies into efficient Cell/B.E.
implementations.

Cell Broadband Engine and its Transfer
Limitations
The Cell/B.E. processor has 8 identical Synergistic
Processing Elements (SPE) alongside a Power Processing
Element (PPE). Each SPE has its own 256 kB local store
(LS) and DMA engine as shown in Figure 1. Larger
system memory is available via a memory controller with a
bandwidth of 25.6 GB/s – much less than the high speed
Element Interconnect Bus (EIB). Each SPE is capable of
processing 25.6 GFLOPS when running at 3.2 GHz for an
aggregate speed of 204.8 GFLOPS. When processing large
data sets, data is often stripmined from the system memory.
In these situations the bandwidth over the memory
controller quickly becomes a bottleneck to the processing
speed.

While system memory is outside of the SPEs’ memory
space, the SPE can transfer data from system memory using
a direct memory access (DMA) API to put or get memory
in the unmapped address space. The Cell Software
Development Kit (Cell SDK) supports both vanilla and list
DMA transfers. Vanilla DMA transfers transfer contiguous
off-chip memory to contiguous on-chip memory. List
DMA transfers transfer tiles to/from system memory
from/to contiguous on-chip memory where a tile is defined
as a submatrix of a larger data set with N contiguous
elements per row and M elements between rows such that
M>N.

To efficiently use these DMA transfers, several design
considerations must be taken into account. There is a
boundary size of 16 bytes on all transfers. The EIB has a
width of 128 bytes, and it follows that the contiguous data

(including elements in a tile’s row) should be at least 128
bytes. Additional experimentation was done to stress the
memory controller bandwidth and determine the optimal
transfer size, and the row length of 2048 bytes was found to
be best, offering 4x improvement over 128 byte row size, as
shown in Figure 2.

Figure 1 – The current Cell/B.E. processor combines the PPE
with 8 SPEs. The memory controller often is a bottleneck.

Figure 2 – Maximum throughput over the memory controller
is achieved when DMA list row sizes are at least 2048 bytes.

Algorithms
The 2-D FFT is implemented on the Cell Broadband Engine
architecture. We consider the data size 512x512 and larger
– the data is too large to fit in a single SPE’s local storage,
and it is too large to fit in the aggregate local storage. Data
must be stripmined from system memory, including
intermediate stages (transposes) in the algorithm. We
present two algorithms that can accommodate these sizes –
a three phase algorithm and a four phase algorithm. The
three phase algorithm can accommodate larger matrices at
the cost of more transfers to and from system memory.

Let P be the number of processors, R*C be the input matrix
size, and the matrix be divided into tiles such that
R=R1*R2 and C=C1*C2, i.e., R1*C1 tiles of size R2*C2.

The 3 phase algorithm is

• Perform the FFT on C/P stripmined columns of size R
into and out of system memory

• Perform the transpose on R1*C1/P tiles of size R2*C2
into and out of system memory

• Perform the FFT on R/P stripmined columns of size C
into and out of system memory.

The 3 phase algorithm requires 6 transfers to and from
system memory – 4 vanilla DMA transfers and 2 list DMA
transfers. The 4 phase algorithm can only be performed on
matrices up to 512x512, but it reduces the number of
transfers to and from system memory. The algorithm is

• Repeat C1 times
o Perform the FFT on C2/p stripmined columns

from system memory to local storage
o Stripmine C2/P*R2/P tiles from the FFT result in

local storage back to system memory
• Repeat R1 times

o Stripmine R2/P*C2/P tiles out of system memory
to local storage

o Perform the FFT and stripmine the R2/P columns
back into system memory

The 4 phase algorithm requires only 4 transfers to and from
system memory – 2 vanilla DMA transfers and 2 list DMA
transfers.

With both algorithms, the DMA work overlaps with the
work of the transpose and the FFT through the use of
double buffered reads and writes to system memory.

The goal of reduction in total number of transfers adds an
additional design requirement when considering the
complex data storage type. The most efficient kernel for
performing an FFT on the SPE’s ALU with VMX
instruction set uses the split complex data type, i.e., the real
and imaginary buffers are stored separately, not interleaved.
Transferring two buffers to and from system memory adds
overhead, so the buffers are allocated adjacently. This
design allows bigger more efficient transfers with half of
the DMA kick-off overhead. However, this consideration
must be addressed when transposing the data.

Performance and Conclusions
The Gedae language and compiler are used to achieve high
performance with minimal development time. The
language allows for direct specification of the tiling of large
matrices. The compiler automates a bare metal
implementation of the DMA and DMA list accesses. The
runtime components are autocoded to introduce zero
overhead to the execution time of the algorithms.
Additionally, Cell/B.E.-specific optimization strategies are
automatically incorporated, such as the use of huge TLB
pages to optimize memory-to-memory IPC and the use of
optimized vector routines for the FFT and transpose
operations.

The upper bound on performance is dependent on the
transfer rate over the system memory controller. The
theoretical bandwidth limit is 25.6 GB/s. As shown in
Figure 2, the maximum we have achieved in the laboratory
while simultaneously using all 8 SPEs is 22 GB/s. We use
the equation 10*N2*log2N to compute the number of
FLOPS for the 2-D FFT algorithm. Assuming a 25.6 GB/s
bandwidth, the upper bound is 72 GFLOPS. Assuming a 22
GB/s bandwidth, the upper bound is 62 GFLOPS. For the
current implementation we are measuring 51.5 GFLOPS for
the four phase algorithm, which equates to an 18.3 GB/s
sustained bandwidth over the memory controller. A Trace
Table of this execution is shown in Figure 3. We have
identified several additional optimizations that will be
incorporated and announced at the conference to bring the
performance close to the theoretical max.

Modern chips add more coprocessors with wider vector
ALUs offering great promise of high throughput. As the
chips provide more FLOPS, the programming challenge
moves towards keeping the pipelines sated with data.
Gedae provides a powerful platform for programming and
debugging these bandwidth issues.

Figure 3 – Execution trace in the Gedae trace table shows the
loading of the 8 processors and the staging of the 4 phase
algorithm – get, row FFT, corner turn, column FFT, put.

References
[1] Greene, J. and R. Cooper. “A Parallel 64K Complex FFT

Algorithm for the IBM/Sony/Toshiba Cell Broadband Engine
Processor, “ GSPx, 2005.

[2] IBM, Sony Computer Entertainment, Toshiba. Cell
Broadband Engine Programming Handbook, Version 1.1,
April 2007. <http://www.ibm.com>.

[3] Lundgren, W. et al. “Simple, Efficient, Portable
Decomposition of Large Data Sets,” HPEC, 2008.

