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Figure 1: Cell processor.

Introduction

The Cell BE is among a new generation of multicore pro-

cessors including the Intel Larrabee and the Tilera TILE64

that provide an impressive peak fixed or floating point per-

formance for scientific, signal processing, visualization, and

other engineering applications. As shown in Fig. 1, the Cell

uses simple in-order cores designed specifically for numer-

ical computing, and requires explicit memory management

to achieve maximal performance, which make programming

and optimizing a challenge. In this paper, we extend Spi-

ral [7], a program generation system, to generate highly opti-

mized linear transform programs for the Cell BE. In doing so,

as presented in [2], we extend Spiral’s architectural paradigms

to include support for distributed memory architectures like

the Cell that allow hiding memory costs using multibuffering

techniques.

We focus on fixed-size code for the 1D complex discrete

Fourier transform (DFT), but also generate code for variants

including transforms that work on real input, 2D input, and

for other transforms including the discrete Cosine and Sine

transforms. We generate code for various usage scenarios,

including latency optimized and throughput optimized code,

and our system can handle various complex data formats and

data distribution formats. The performance of Spiral gener-

ated code for the Cell is comparable to, and in many cases

better than existing implementations, where available.

Spiral. Spiral automates the generation of platform adapted

high-performance libraries with a focus on the domain of lin-

ear transforms. Spiral provides a range of functionality dif-

ficult to match with hand written libraries, with generated

programs comparing well against the performance of hand-

optimized code.

Spiral uses a domain-specific, declarative, mathematical lan-

guage to both represent algorithms, and to model the architec-

ture at a high level. It uses rewriting to transform algorithms

at a high level of abstraction to “fit” the target architecture.
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The input to Spiral is a high-level functional description of

the required transform (e.g., DFT of size 8,192 on 4 SPEs);

the output is a highly optimized C program implementation.

Related work. Various other works including Cico et al. [4],

Chow [3], FFTC [1], FFTW [5], and IBM [6] have produced

single-SPE and multi-SPE FFT libraries for the Cell, with

various functionality and performance limitations. Spiral is

among the class of several automatic program generation and

performance tuning systems.

Parallelization and Streaming

Generation of high-performance code for the Cell involves

making efficient use of the Cell architecture’s parallelism

(SIMD and multicore), and its support for hiding memory

costs using explicit DMA accesses and multibuffering. We

extend Spiral in a general manner to support these concepts,

and provide a separate Cell-specific implementation layer, al-

lowing us to easily port our techniques to future architectures

that implement these architectural paradigms.

We perform parallelization and streaming using formula ma-

nipulation and rewriting. Linear transforms are represented

in Spiral as matrices where performing matrix-vector multi-

plication on the input vector with the transform matrix trans-

forms it into the output vector. Algorithms for transforms are

viewed as structured factorizations of the transform matrices,

represented using Spiral’s internal signal processing language

(SPL) [7], which is based on the Kronecker or tensor product

formalism. For instance, the well known Cooley-Tukey re-

cursive breakdown of the 1D DFT is represented in SPL as:

DFTmn → (DFTn ⊗ Im)Tn,m(In ⊗DFTm) Lnm
n . (1)

Key to the SPL representation is the fact that the tensor prod-

uct can be viewed as a program loop where certain loop

properties are made explicit. This allows us to derive high-

performance implementations of the loop that can be mapped

to the hardware architecture.

A problem is specified by tagging a transform with with hard-

ware specifications (e.g., the number of SPEs to parallelize

for). Formula identities transform SPL formulas into base

case mathematical equivalents in Σ-SPL(see [2] for details)

that are structurally suited for parallelization and/or stream-

ing, from which optimized C code is generated. We show

examples of formula manipulation only at the SPL level in

this paper due to space constraints.

Parallelization. We reuse Spiral’s SIMD paradigm for the

Cell. We develop a multicore paradigm that uses explicit

DMA-based inter-core communication with large packet

sizes to exchange data using the fast on-chip interconnect. As
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Figure 2: Performance results for latency optimized 1D and 2D linear transforms. Higher is better.

an example, we show how our system parallelizes (1) to exe-

cute on p SPEs:

DFTmn
︸ ︷︷ ︸

spe(p,µ)

=
(
Ip ⊗‖(DFTm ⊗ In/p)

)((Lmp
p ⊗ In/pµ)⊗Iµ)

Tmn
m

(
Ip ⊗‖(Im/p ⊗DFTn) L

mn/p
m/p

)(
(Lpn

p ⊗ Im/pµ) ⊗ Iµ
)
.

Above, we use conjugation AP = P−1AP of a matrix A by

a permutation matrix P . The above rewrites (1) into factors

that correspond to the base cases for parallelization: Ip ⊗‖Am

represents execution of Am on p processors in parallel, and

the P ⊗ Iµ terms symbolize global permutations, which are

then translated into all-to-all inter-SPE DMA communication

with packet size µ.

Streaming. We also extend Spiral’s formalism to support

a streaming paradigm. Streaming or multibuffering is the

idea of hiding memory access costs by explicitly managing

memory to overlap computation with memory accesses. Our

paradigm works in two scenarios. In the first scenario, we

generate throughput-optimized code for small to mid-sized

transforms. In the second scenario, we generate code for

transforms too large to fit on-chip, that must be streamed in

and out of the chip to be computed in parts. We use a similar

approach for streaming as for parallelism, not shown here due

to space constraints.

Experimental Results

Fig. 2 shows our performance results, presented as normal-

ized inverse runtime measured in pseudo Gflop/s. Evalua-

tion was done on a single Cell processor of 3.2GHz IBM Cell

Blade QS20, and double precision implementations on a Pow-

erXCell 8i based system.

Fig. 2(a) and Fig. 2(b) show single-core performance of Spiral

generated DFT kernels and others when available. Fig. 2(c)

shows other transforms performed on a single-SPE. Fig. 2(d)

compares our multi-SPE code to other libraries. We achieve

close to 80 Gflop/s when using a block-cyclic data distribu-

tion format shown in Fig. 2(e). Fig. 2(f) shows 2D DFT ker-

nels on a single-SPE some of which are too large to fit on-

chip, performed using multibuffering techniques.

Current Work. Multi-SPE versions of Fig. 2(e) and Fig. 2(f),

and extending Fig. 2(c) to include large DFT sizes using

multibuffering are work-in-progress.

Conclusion

As the number of cores in emerging multicore architectures

scale, accessing off-core memory comes at an expense. Fur-

ther, inter-core contention for off-chip memory resources in-

creases, forcing chip designers to use alternative memory ac-

cess techniques which in turn increase programming burden.

We address this in the context of high performance program

generation for linear transform libraries by extending Spiral

to support the general architectural paradigms (rather than de-

velop a Cell-specific system) inherent in such emerging mul-

ticore architectures.
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