Floating Point Applications On FPGAs
Can Be Competitive*

Martin Herbordt Bharat Sukhwani
Matt Chiu Ashfaq Khan

Computer Architecture and Automated Design Laboratory
Department of Electrical and Computer Engineering
Boston University
http://www.bu.edu/caadlab

*This work is supported in part by the U.S. NIH/NCRR and by IBM %

In the end all architectures, CPU, GPU, FPGA, etc. will
converge
-- Pradeep Dubey (Intel), SAAHPCO09

BOSTON
FP for FPGAs HPEC 2009

In the end all architectures, CPU, GPU, FPGA, etc. will

converge
But we need to have really fast scatter/gather and

synchronization
-- Pradeep Dubey (Intel), SAAHPCO09

BOSTON
FP for FPGAs HPEC 2009

In the end all architectures, CPU, GPU, etc. will

converge

But we need to have really fast scatter/gather and
synchronization

FP for FPGAS

-- Pradeep Dubey (Intel), SAAHPCO09

More active transistors, higher frequency (2003)

More active transistors, higherfregueney (2007)
More aetive transistors, higherfregueney (2012)

More-active-transisters;-higherfregueney
-- Brian Flachs (IBM), SAAHPC 2009

HPEC 2009

In the end all architectures, CPU, GPU, etc. will

converge

But we need to have really fast scatter/gather and
synchronization

FP for FPGAS

-- Pradeep Dubey (Intel), SAAHPCO09

More active transistors, higher frequency (2003)

More active transistors, higherfregueney (2007)
More aetive transistors, higherfregueney (2012)
A . . higher

In the end the only way to get better performance

is with special purpose hardware
-- Brian Flachs (IBM), SAAHPC 2009

HPEC 2009

In the end all architectures, CPU, GPU, etc. will
converge
But we need to have really fast scatter/gather and

synchronization
-- Pradeep Dubey (Intel), SAAHPCO09

More active transistors, higher frequency (2003)

More active transistors, higherfregueney (2007)
More active transistors, higherfregueney (2012)
A : : picher s

In the end the only way to get better performance is

with special purpose hardware
-- Brian Flachs (IBM), SAAHPC 2009

In the end we’re all dead
-- John Maynard Keynes

FP for FPGAs HPEC 2009

Theme of this talk ...

FPGASs give you
-> Application-specific processors

- Single cycle scatter/gather & synchronization
- In general, lot’s of degrees of freedom

BOSTON
FP for FPGAs HPEC 2009

Peak Performance in FLOPs — 17

2/4 FMUL, 2/4 FADD per cycle
4 DP or 8 SP per cycle per core
17 = 4 cores, 3GHz

Peak Performance =
48 GFLOPs (DP)
96 GFLOPs (SP)

FP for FPGAS

[Nehalem Block Diagram

L1 Branch 32KB L1
Prediction) Instru:tim'llm Cache
L2 Branch == . 5
Prediction Instruction TLB (per thread) 4
16 Bytes
Instruction Fetch
and PreDecode
Front End
l 6 Instructions
| Instruction Q,ueuc |
(per thread?)
5 Instructions
Decode
uCode
ROM [Complex Simple Simple Simple
Decoder Decoder Decoder Decoder
Loop Stream Detec
(28 uOPs)
. 4uOPs
Execution -
i R /Allocat 2nd
E ngine (duplimlteé] rijg?;u mtoecsaeunead) Lelvel 256%(]3
TLB L2]
Cache
(<10 cycles) L3 and
Retirement Unit (ReOrder Buffer) beyond
(128 uOPs in flight) 4u0Ps
| Unified Reservation Station (36 entries)
g g g| 6uops | g g]
< — (=] w s n
ol | [l o =
PP Multiply | | FPAd Load | | sitec| | Dot Branch
Divide Comlex FP Shuffle
SSE Integer SSE
== |mteger ALU| | SSE Iut Integer ALU
& Shuffles Multiply & Shuffles
i . load Guifer ktore buffes
Execution Units 48 erfiries 32 entries
Data TLB (partitioned per thread)
32KB L1
Data Cache (4 cycles)
Memory

Copyright (c) 2008 Hiroshige Goto All rights reserved.

Peak Performance in FLOPs — Tesla 1060

SP core 2> 1 FMUL, 1 FMAD per cycle for 3 FLOPs / cycle / SP core
SM - 8 SP cores Tesla 1060 - 30 SMs @ 1.3GHz

FP fi

Peak Performance = 936 GFLOPs (SP)

G4KIB per SM RF (1920KiB total)

256KiB shared L2 surface cache
16KiB per cluster L1 cache (160KiB total)

16KiB per SM shared memory (480KiB total)

GT200

copyright Beyond3D 2008

|I| Vertex thread setup and input assembler
|z| Geometry thread setup

|E| Pixel thread setup

Izl Global thread scheduler

E Triangle setup (1 triangle/clock), rasterisation and Z-cull

Thread processing cluster
Per cluster scheduler and register files (16K FP32 registers per SM)

SP and interpolator/special ALU groups

3 x 8-way scalar FP32 SP ALUs (MADD + MUL dual-issue/clk) + FP64 ALU (MADD/clk) {-J

H-J

3 x 8-way FP32 scalar interpolator (1 attrib/clk) and special function (4 clks/op) ALUs
. 8 pixels/clock data address and setup
@ 8 INT8 bilerps/clock filtering + L1 local store (16KiB) m g@m m m
B4
[13] ROP partition S 3
A e or s depth o samples},':lock' MSA blend!clo‘:k m m m m

[E1|[E] Le] [w] [¥] [a]

AA: Ox = 82 fclock, 4x = 1Z + 1C/clock; max BxMSAA, 16xCSAA
L2 shared data store (256KiB*)

DRAM pair (2 x 32-bit)

base clock domain, memory clock domain, shader clock domain
1.4B transistors, 65nm @ TSMC

Peak Performance in FLOPs — FPGAs (65nm)

« 72 GFLOPs (SP)
— Stratix-11l 340 - 144 FMUL, 215 FADD @ 200MHz
— mix from a systolic array for a multi-parameter correlation
— conservative for an application with short interconnects
— Uses Altera IP cores

. 190 GFLOPs (SP)

— Virtex-5 SX240 (www.xilinx.com)
— Very high clock frequency? Custom FP blocks?

« 85-94 GFLOPs (SP)
— Virtex-5 LX330 (Strenski, 2009)
— various very conservative assumptions
— not real applications

BOSTON
FP for FPGAs HPEC 2009

Key question ...

How realistic is peak performance?

BOSTON
FP for FPGAs HPEC 2009

Utilization Examples — Core 2 Quadcore

1. 1283 point 3D FFT

— FFTW (perhaps not the ultimate, but widely used)
— Auto-tuned

— 58ms

— 1.6 GFLOPs (DP) on four 3 GHz cores or ~ 8% of peak
— Higher utilizations have been achieved

2. Matrix-matrix multiply -- with icc -O2 with blocking
— various reasonable matrix and block sizes
— compiler vectorizes and unrolls
— 1.77 GFLOPs on one 2 GHz core or ~ 22% of peak

3. Matrix-matrix multiply -- maximally tuned
— Very high utilizations have been achieved ~ 90% of peak

BOSTON
FP for FPGAs HPEC 2009

Utilization Examples — Tesla 1060

e 1283 3D FFT
— Nvidia CUFFT library function
— 6.3 ms (not including transfer time) for ~ 4% of peak

e Matrix-matrix multiply
— 60% or more of peak has been achieved

BOSTON
FP for FPGAs HPEC 2009

Why is FP on FPGASs plausible?

With FPGA's flexibility (additional degrees of freedom):
« Can improve raw capability
e Can achieve high utilization

As always with FPGAs,
Flexibility -
reduced chip area per computation -

additional parallelism -
Improved performance

BOSTON
FP for FPGAs HPEC 2009

Improving Raw FP Capability of FPGAS

1. FP Compiler (Langhammer et al.)
— Optimize FP pipelines

2. Application-specific arithmetic
— Reduced precision
— Fixed point
— Hybrid representations

BOSTON
FP for FPGAs HPEC 2009

Altera Floating Point Compiler (FPC)

In a datapath, some redundancy can be removed, especially
within a cluster of similar or identical operations

Cluster of identical or similar
The advantage of FPC is achieved by operations

Removal of redundant normalizations within a cluster
* Keep un-normalization with large precision, if possible °

° o
Normalization usually are performed out of a local cluster or out . K
of datapath

amwoeb@mgag

Change in the internal number representation and format)

 The efficiency of FPC*

L
L]
[
®
L4
L
@
e |
L] [
L
L]
-
-
@
®
-
o

3
L]

Up to 50% reduction in soft logic, no gain for hard-multipliers; :‘: /
leaving more space for routing optimization and frequency
improvement

Up to 50% of latency saving

Courtesy Altera
Linear-algebra applications with 1:1 adder/multiplier ratio

100 GFLOPs was reported for xGEMM application, running at 250MHz
Stratix EP3SE260

6an

*Altera RSSI 2008, Martin Langhammer

FP for FPGAS

BOSTON

Application Specific Arithmetic

Fixed-Point Addition

Single Precision FP*

FP for FPGASs

Precision ALUT | DSP (18 x 18) | Latency Core ALUT DSP (18x18) | Latency
3 0.009% 0% 5) Addition | 0.25% 0 10>
T M il < | Multiplier 0.13% 0.5% 48___/i>
i & ivider 0.18% 1.7% 15
S 0.032% 0% = > k k
64 4‘0.06 1% 0% 2 Inverse Root | 0.16% 1.4% 19
EXP 0.26% 1.4% 16
LOG 0.59% 0.9% 21
Fixed-Point Multiplication Double Precision FP*
Core ALUT DSP (18x18) | Latency
Addition 0.49% 0 10-14
Multiplier 0.29% 1.3% 7
Divider 0.44% 3.5% 21
Inverse Root 0.44% 3.5% 32
EXP 0.81% 3.6% 22
LOG 1.01% 1.6% 26

Resource utilization numbers are referred to Altera Stratix EP3SE260

*RSSI 2008, Martin Langhammer

HPEC 2009

BOSTON
UNIVERSITY

Enabling Factors for High Utilization

1. Choice of FP units
— Exactly those that you need

2. Ordering/positioning FP units
— Pass data directly from one to the next

3. Embedding non-FP ops to reduce data movement
— Constants, data-dependent coefficients

4. Control iIs embedded in the interconnect

5. Flexible communication helps keep pipelines filled
— Complex patterns, scatter/gather (broadcast/reduce)

BOSTON
FP for FPGAs HPEC 2009

Molecular Dynamics*

MD — An iterative application of Newtonian mechanics to
ensembles of atoms and molecules

Runs in phases: Motion
ate
(VZrIet) N N
Generally O(n), Initially O(n?), done
done on host on coprocessor

—A 1

Many fOfCeS typlca”y Compl'”:ed’ Ftotal _ Fbond + F angle + Ftorsion + F H + F non—bonded

but complexity lies in the non-bonded, spatially extende
van der Waals (LJ) and Coulombic (C)

14 8)

F—LJ :Z gab 12 % _6 % >F__ F-C _ qlz qi

i 2
i=i Oab ‘rji‘
\

N

*IET/CDTO6, ParC08, FPLO9 HPEC 2009

Examine Short-Range Force Kernel

 Non-bonded short-range force consumes >90% of total
simulation time

short

4 Go+Gixr? +G.xr?)
smoothing

-14 -8
A XTI =B, xr

ji gnction

LJ force

short range
component of
Coulomb force

BOSTON
FP for FPGAs HPEC 2009

Force Pipeline

1. Choice of FP units
Exactly those that you need:
16 FADD, 16FMUL, 1 FDIV, 1 FSQRT

2. Ordering/positioning FP units
Pass data directly from one to the next

3. Embedding non-FP ops

4. Embedded control

FP for FPGAS

X] Vi Vi z1 7l
_______________ f_______________f______l
t/- Box Length (-) +/- Box Length { - +/1 Box Length
A i

——Ir'/
| PRC +
+ 1 | Distance
| Square
3 3 i Logic
| (Fixed/FP)
I

]
1
/ Multiplexer
—_—]

. :' Optional l"ixci\l.r"l"l-’ Converter
i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Logic

X

w5y
A

g ¥
z
OO
force x force v force =

HPEC 2009

BOSTON
UNIVERSITY

Force Pipeline 1.
Double Precision

Double Precision

Resource Utilization Stratix-1l11 340

Mode Precision | Logic Utilization | Multipliers | Frequency
(ALUT/ (MHz)
Register)
IP Core double | 21% (10% / 18%) 27% 181
Number of force pipelines = 3
Throughput = 540M forces/s
FP for FPGAs HPEC 2009

xi Xi vi Vi 7 Zi
@ Comparator r========PK === === e e A e o e e e AR
+/- Hox Length +/- Box Length +/- Box Length +/3 Box Length
O Adder ! A A '_E_/

]

\ FBC+

i Distance
1 Square
1 Logic

Multiplexer !

Y :' Optional F1xc:t].1FP Converter
-]

Logic

| (Fixed/FP)

Z

BOSTON
UNIVERSITY

Force Pipeline 2:
Single Precision

Single precision

 Exclusion (small r) computed on host

« Precision may not be adequate

Resource Utilization Stratix-1l11 340

Mode Precision | Logic Utilization | Multipliers | Frequency
(ALUT/ (MHz)
Register)

IP Core double | 21% (10% / 18%) 27% 181

IP Core single 10% (5% / 9%) 11% 184

Number of force pipelines =9
Throughput =1.7G (3.15x DP)

FP for FPGAS

) Multiplexer

HAY :' Optional FierLL-‘"FP Converter
e 1

Logic

1

| PBC+

. Distance
i Square
i Logic

X

forc

E (FixedFP)

b i
z
v
e x force v force Z

HPEC 2009

BOSTON
UNIVERSITY

Force Pipeline 3:
Floating Point Compiler

Optional Fixed/FP
Converter

xi Xi vi
CD]TIPH.TH].()T |
+/- Box Length +/- Box Length
1
\ A

+/- Box Length
A

-

PBC+
Distance
Square
Logic
(Fixed/FP)

I

I

I

I

I

I

|
® Multiplier !
i
@ Square root |
I

|

1

I

I

I

I

I

|

) Multiplexer

vV :' Optional Fixe:ﬂ.-"F P Converter
et :

FP for FPGAS

Logic :

AN
X
OMEC
force x force v

force #

HPEC 2009

BOS
UNIVERSITY

Force Pi D eline 3 © f‘;kh@)\@ﬁ/ -
Floating Point Compiler [0=

| PRC+

| Distance
1 Square

E Logic

! (Fised/FP)

>
O,

Single precision + optimization w/ FPC (@) Divider
Exclusion (small r) computed on host 7 Mutipleer |
« Floating point parts optimized with FPC |\ e conees

(C3 Smooth Funetion

Resource Utilization Stratix-111 340

|
|
|
i
Mode Precision | Logic Utilization | Multipliers | Frequency |
(ALUT/ (MHz) |
Register) |
|
IPCore | double | 21% (10% /18%) 27% 181 i
|
IP Core single 10% (5% / 9%) 11% 184 |
|
|
FPC* single 7% (4% / 6%) 11% 202 AR . /SRR . o ——
Summation | QO

Logic I

Number of force pipelines =9
Throughput = 1.8G (3.3x DP) O

X Z
v
force x force v force

BOSTON
FP for FPGAs HPEC 2009

Force Pipeline 4.

Some Fixed Point

Hybrid: Single precision + 32 bit fixed point
 Exclusion (small r) computed on host
o 32-bit precision likely to be adequate

(see HPRCTAOQS)

Resource Utilization Stratix-1l11 340

Mode Precision | Logic Utilization | Multipliers | Frequency
(ALUT/ (MHz)
Register)
IP Core double | 21% (10% / 18%) 27% 181
IP Core single 10% (5% / 9%) 11% 184
FPC* single 7% (4% / 6%) 11% 202
Hybrid 32-hit 5% (4% / 5%) 9% 251
FPC* integer
/single
Number of force pipelines = 11
Throughput = 2.8G (5.2x DP)
FP for FPGAs HPEC 2009

i X1 Xi vi vi 7i val
@ Comparator r---=---—"F2K--"""---"T----- AR Pl e St
+/- Hox Length +/- Box Length | -) +/- Box Length +/1 Box Length
) I
’ -
I
]

@ Adder I A A __i_/
| | PBC+
O Sub i Distance
: i Square
® Multiplier | 1 Logic
} ! (Fixed/FP)
@ Square root X 7
| H
(%) Divider | |
)
I 1
I 1
) Multiplexer | i
]
1
]

HAY :' Optional Fixc:LL-‘"FP Converter
e 1

Logic |

X

forc

L r
z
-
e X force v force 7

BOSTON
UNIVERSITY

O(N) with Cell Lists

. . 14 8
Observation: Fo =y g e | g % | |p
« Typical volume to be simulated = 100A3 ' oL | ||)
e Typical LJ cut-off radius = 10A
Therefore, for all-to-all O(N?) computation, o lo |o | o

most work is wasted o 5 9
ol © O -
e O
Solution: o b //;hO ol _
Partition space into “cells,” each roughly the size O O\\o P/éo ¢
of the cut-off OO o | °p
Compute forces on P only w.r.t. particles in o OTo | 4
adjacent cells. O

— Issue - shape of cell — spherical would be more efficient,
but cubic is easier to control

— Issue = size of cell — smaller cells mean less useless force
computations, but more difficult control. Limit is where the

cell is the atom itself.

BOSTON
FP for FPGAs HPEC 2009

Problem with Cell Lists

 Problem - Efficiency

— ~15.5% efficiency when cell size is
equal to cutoff o—

— 84.5% of computation is wasted

. . . (O O
e Solution - Filtering* o °© | P
— Remove unnecessary particles o | 5 1ol o

outside cutoff
« on-the-fly neighbor lists

— Only compute forces for “valid”
particle pairs

*FPL 2009

BOSTON
FP for FPGAs HPEC 2009

Idea: = 6x as many “filters” as force pipelines
- Throughput improves 6x for marginal cost

l Position

POS SRAM °

=
n)nln ks %““s sl

‘ ° |[° %o ° °o Filter Filter Bank Filter
° olpo° a
o ° /b ® O
o° ?‘9—; °)7 Buffer

| | IHome cell

Home cell
distribution pipe

@ Filters Buffers

Force
pipeline

o
ooo

9 filter units

Buffero
Eﬁ F:0rce Plpeh E Eﬁ
0 <

k

040

Summation

O'ACC SRAM °.
FPGA)

Acceleration
FP for FPGAs

Divider

jug Multiplexer E
::\i‘,‘ Optional lec:(l»“FP Converter 2 = x"2+y"2+2"2
. |

| Ao AT ’;_/

i

i \ PBC+

| + 4 | Distance
i i Square

! 3 1 Logic

i ! (FixedFP)
i i

[- 3 !
- 's

Logic

Summation I QO

BT ©
force x force . foree

More ideas -- reduce precision of filter

-- approximate spherical geometry

1 Position “

Method

POS SRAM °

l .

ﬁ POSItlon Cache ﬁ g ﬁ .

Reduced
precision

ALUTs/
Registers

Multipliers

Filter
Efficiency

Reduced
precision-

.
s

DY e oo

_ s

@ Adder

O Sub
@ Multiplier

Extra
Work

3%

logic only muls

Force Pipeline

5695/ 7678

(5%)

70 (9.1%)

3%

T Distance
i Square

; Logic

! (Fixed/FP)
1

;
@ Square root | 3

;
. Divider

k Optional

Filter Filter Bank Filter |-§ @ Comparator
Ll Gt -‘l
]
Buffer Buffer =
< o o oo LI L
B m Force Plpellne D m
©

i

057

Acceleration

FP for FPGAS

-
Summation
Logic

X z
”
e X force v force

MD Design (so far in this talk)

For all particle pairs (P,,P,)

« Small r gets done on host in DP °5

* I <cut-off gets done with force pipeline | o | © |

* (P.,Pyp) In cell-set gets done with filter | o | ~ N o

O @) @)

v @
@)

LI O
. (P,,P,) notin cell-set computed on °| %o OOO
host <> O(1) : 5 | °b
@ ICH S

A high end FPGA (65nm) fits
e 8-10 force pipelines
o 80 filters

BOSTON
FP for FPGAs HPEC 2009

Much more to get this working ...

l Position
(@]
POS SRAM °
e l: e | | IHome cell

Cell set Home cell
Position Cache distribution pipe
e 7
° i 7
o |lo ©° oo 0° o : . .
‘ () o Filter Filter Bank Filter | | Force
o) . .
o °°/°° S ® ©® & © » @ |°ﬂ o pipeline
OO ?_Q_P. o } o Buffer Buffer o g
o Y o o
e o o I o o oot) (LT[0
o ® ol ° Ko Force Pipeline Filters Buffers
00 ° o °c. 2 8 8 | 9 filter units
° ()
o oo o) 4) 4
— R IR I

PP Aoc Ceche LT High Level Loop

* Cells are mapped to BRAMs
* Process one home cell at a time
* Load 9 new cells per home cell

Summation

° []
ACC SRAM

o
F PGA 0 Acceleration

BOSTON
FP for FPGAS

Mapping Particles Pairs to Filters

o Particle Mapping (PM) Neighboring
cells @ Home cell
— Each filter is reSpOnSible for a Reference particles are
different reference particle W) | ERn—mm ditributed into each
@ J_[@] NN
7| [Pl
Filter Buffer
Y —1mm
—®| (o] 11T

— Particle pairs which satisfy filtering
rules are stored into filter queues : I Yy s
for force computations

—2{ o]
T Lio) D

8-9 Filters / force pipeline

BOSTON
FP for FPGAs HPEC 2009

U

Filtering List — Continuous Queueing

[J “Matching” pairs generated
by filters are directed into
FIFOs and processed by force
pipelines

Stall

Stall signal is asserted

@ FIFO
N | -' when more than one

O Conce'ntrator |§ resp(?n5|ble ﬂ W queue is almost full
to drain matching pairs from

FIFOs to force pipeline ® FIFO

| Round-Robin arbiter among ﬂ YN |
queues with priority given first N Force Pipeline

to those that are full and @ ' = ==

Periodic Boundary | Full Precision Force
second to those that are non- ‘ FIFO . Condition Filtering Computations
o %[][°

O Assert “stall” signal while more

Concentrator

FIFO Round-Robin with priority

than one queue is almost full ()
- (T H—[mme
O Less memory space required but N
more complex logic Priority is given to a queue
which is almost full

BOSTON
FP for FPGAs HPEC 2009

Queue Size

Efficiency with throttling

100 S
 Queue size of 8 is sufficient to -//f

g 95 -
achieve 99.2% high utilization > >//),/’—‘——‘—‘
% 90 ' —e— PM-8 |
() —=— CM-9
TR —a—PMO ||
80 ‘+I‘3M-10

2 4 8 16 32 64

Queue size (per queue)

BOSTON
FP for FPGAs HPEC 2009

MD Results

« 8 force pipelines fit easily into a Altera Stratix |l EP3SE260
— Place & Route
— Simulation quality validated with standard methods (see HPRCTAOQS8)
— Runs @ ~200 MHz
— Each filter bank contains 8-9 filters and one force pipelines
— Over 95% utilization (data transfers discussed elsewhere)

« Performance on short-range non-bonded force computation
— 8 x 200MHz x 95% = 1.5G “payload” force computations per second
— 18x performance of original DP implementation
— Executes one iteration of standard 90K particle ApoAl benchmark in 20 ms
— 85x speed-up over single core

BOSTON
FP for FPGAs HPEC 2009

Performance, cont.

4 90W 1 S3K

GPU 25 250W 3.4 S4K
- Tesla 1060

Quadcore

FPGA 80 100W 18 S10K
- Stratix-lll

ASIC 1,280 ? ? S1M
- Desmond

BOSTON
FP for FPGAs HPEC 2009 -

Why Is Docking so important?”

Problem: Combat the bird flu virus

Method: Inhibit its function by “gumming up”
Neuraminidase, a surface protein, with an

Inhibitor
- Neuraminidase helps release progeny viruses from the cell.

Procedure*:

- Search protein surface for likely sites

- Find a molecule that binds there (and only
there)

*FPL 2008, GPGPU 2009
*Landon, et al. Chem. Biol. Drug Des 2008
*From New Scientist www.newscientist.com/channel/health/bird-flu

BOSTON
FP for FPGAs HPEC 2009 -

Modeling Rigid Docking

Rigid-body approximation

Grid based computing
Exhaustive 6D search

Low Precision Data

Pose score = 3D correlation sum

s> R

U 11Kk

FFT to speedup the correlation
Reduces from O(N°) to O(N°logN)

Image courtesy of Structural Bioinformatics Lab, BU

BOSTON
FP for FPGAs HPEC 2009 -

Results

Speedup on different architectures

Ligand Docking

Protein Docking

Correlation only speedups (8 correlations) PIPER Overall [{fleedup
1000 40)
688.7 —e—Multicore Best(4 cores) a5 36.75 —&— Multicore Best(4 cores)
—#— GPU Best \32 - GPU Best
% 127.33 —&—FPGA Direct Correlation 30 \ \ == FPGA Direct Correlation
8 100 o
o =
< 3
~ |
o
s ")
§ 10 -
& 3.9 341 3.41
—t *
*
1 4 cubed 8 cubed 16 cubed 32 cubed 64 cubed
4 cubed 8 cubed 16 cubed 32 cubed 64 cubed
Size of ligand grid Size of ligand grid
* Baseline: Best Correlation on single core * Baseline: PIPER running on single core
HPEC 2009 BOSTON
UNIVERSITY

FP for FPGAS

Discrete Event Simulation of MD*

o Simulation with simplified models
« Approximate forces with barriers and square wells
» Classic discrete event simulation

*FPLO7, FCCMO08

BOSTON
FP for FPGAs HPEC 2009

An Alternative ...

Only update particle state when
“something happens”

« “Something happens” = adiscrete event

.

Q

 Advantage - DMD runs 10°to 10° times faster
than tradition MD

 Disadvantage > Laws of physics are continuous

BOSTON
FP for FPGAs HPEC 2009

Discrete Event Simulation

Event
_ _ _ Predictor
e Simulation proceeds as a series of (& Remover)
discrete element-wise interactions
. . new state
— NOT time-step driven ,
state info
info
System Event events &
State Processor invalidation
« Seen in simulations of ... ' events
— Circuits
_ Networks Time-Ordered
: Event Queue
— Traffic : (.lu u
_ arbitrary insertions
— Systems Biology and deletions
— Combat

BOSTON
FP for FPGAs HPEC 2009

PDES - Why is it hard for DMD?

Event propagation
can be infinitely
fast over any T

distance!
T+4

Note: a “chain” with
rigid links is analogous
and much more likely
to occur in practice

BOSTON
FP for FPGAs HPEC 2009 -

Overview - Dataflow

Main idea: DMD in one biqg pipeline

® Events processed with a throughput of one event per cycle
e Therefore, in a single cycle:

e State is updated (event is committed)

e Invalidations are processed

e New events are inserted — up to four are possible

Event flow
Update
state
S
= Event
3 Predictor
Units

T Invalidations T | | T /j‘ T7]

New Event Insertions

Stall Inducing Insertions

BOSTON
FP for FPGAs HPEC 2009

On-Chip, “Scrunching” Priority Queue

Queue operation = Each cycle:

e Dequeue next event
e Up to four insertions

Insertion/deletion priority queue

Jnvalidations

_ . Routing | —2r—r—r—
e Unbounded invalidates Randomizef [_| lf 1T
. . [} == | 1 1 + 1 1 | |
e Fill holes with “scrunching” S T T
(conditional two-step advance) - _Iﬁ.-L—ﬁ
New Elements =
From Event
Pradictor 7 T 1 1 Y
Queue element Ded <
Left Right Logic >
Data In — — Data In
peQ [FTTT ., /* EnQ
Valid Out Valid Bit \alid In
Data Out Payload Data Oyt
Time Tag
Comparison) E 4 Comparison
Result Left | | Result Right
Comparison New
Result Out + Elements
FP for FPGAS HPEC 2009

AN

™,
~,

To

| e—
Event
Processor

o

Ve

— Comparator

Matwork

BOSTON
UNIVERSITY

DMD Summary

Key Methods:
e Associative processing: broadcast, compare, etc.
« Standard HW components: priority queue, etc.

Performance —
e 200x — 400x for small to medium sized models

« 3D PDMD is difficult to scale to more than a small
number of cores

BOSTON
FP for FPGAs HPEC 2009

Summary

o« 2007-era FPGAs have similar raw FP capabillity as current high-end
microprocessors

 FPGA flexibility gives numerous opportunities to substantially
Increase that FP capability

— Selectable mode and precision
— Custom pipelines
— Pipeline-specific optimizations
 FPGAs can be configured to obtain extremely high utilization.
Key capabilities include:

— Single cycle communication and synchronization
— Single cycle broadcast/reduce (scatter/gather)
— Flexible communication

 Demonstration on high-impact applications

BOSTON
FP for FPGAs HPEC 2009

Questions?

BOSTON
FP for FPGAs HPEC 2009

