
Effective Floating Point Applications on FPGAs:
Examples from Molecular Modeling∗

Bharat Sukhwani Matt Chiu Md. Ashfaq Khan Martin C. Herbordt

Computer Architecture and Automated Design Laboratory
Department of Electrical and Computer Engineering

Boston University; Boston, MA 02215

ABSTRACT
While FPGAs have only one fifth the raw floating point capa-
bility of GPUs, other attributes allow them to be surprisingly
competitive with respect to a number of critical floating point
applications. In the first part of this extended abstract we re-
view these FPGA attributes. In the second part we sketch
three applications in molecular modeling where we have found
FPGA performance to compare favorably: molecular dynamics,
molecular docking, and discrete event molecular dynamics.

1. INTRODUCTION
With GPUs offering nearly one TFLOP peak performance,

the competitiveness of FPGAs in floating point intensive ap-
plications (FP), which has always been tenuous, now seems
improbable. Here we show that this is not necessarily so –
rather, that the FPGA’s flexibility, together with algorithmic
restructuring, can yield competitive performance for some of
the most demanding and critical FP applications.

We begin with some general points about FPGA floating
point capability, beginning with peak numbers.

1. Raw FP capability from IP cores. Because FPGAs
are flexible and because different FP cores have differ-
ent resource requirements this number varies. For single
precision on the Altera Stratix III SL340, we fit 144 mul-
tipliers and 215 adders, while leaving much of the routing
logic still available. Running at 200MHz and assuming
100% utilization gives a peak performance of 72 GFlops.
Other reports indicate up to 190 GFlops for the Virtex 5
SX240 (from www.xilinx.com).

2. FP cabability with pipeline optimization. In a pipeline
of FP units, data are repeatedly unpacked and repacked.
Removing these and other redundant operations, plus
performing certain other optimizations, can improve the
raw FP capability by more than 50% [3].

3. Arbitrary precision. If lower precision or range are
acceptable, then non-standard representations of FP or
fixed point can be used with a proportional increase in
performance.

The true benefit of using FPGAs, however, lies in the fraction
of raw performance that can be obtained.

1. Overall. FPGAs allow the construction of microarchitec-
tures specific to a particular application. These generally
include some number of dedicated FP pipelines.

2. Feeding the pipelines. FPGAs have collective BRAM
bandwidth of 4TB/s. Moveover, this bandwidth can be
directed to the pipelines with substantial flexibility.

3. Communication among threads. Communication among
threads can often be designed to have nearly arbitrarily
low latency.

∗This work was supported in part by the NIH through award
#R01-RR023168-01A1. Web: www.bu.edu/caadlab. Email:
{herbordt|bharats}@bu.edu

4. Synchronization can be similarly designed.

As a result, it is common to design FP applications where,
in the steady state, payload is delivered by every pipeline on
every cycle. Since communication can often be managed in the
background, even with set-up and tear-down, 50% utilization
or more can be achieved (see, e.g., [1]).

On GPUs and CPUs, achieving such high utilizations is diffi-
cult. As an example, we look at a high-impact and highly tuned
application: the FFT. On the NVIDIA Tesla C1060 we run a
1283 FFT in 6.3ms for a utilization of less than 4% (using the
NVIDIA CUFFT library and not counting transfer time). On
a 2GHz Intel Xeon quad-core CPU the same FFT runs in 58ms
for a utilization of about 16% (using FFTW www.fftw.org and
assuming a peak of 24GFlops). Please note that these results
represent a non-scientific sample, there are certainly applica-
tions for which much higher utilizations can be achieved.

From this discussion it follows (trivially) that FPGAs can
get competitive performance on FP applications when there
exists a good mapping and especially when single precision or
less is tolerable. For the rest of this abstract we discuss three
such applications: molecular dynamics (MD), molecular dock-
ing (docking), and molecular dynamics based on discrete event
simulation (DMD).

2. MOLECULAR DYNAMICS
MD simulation is an iterative application of Newtonian me-

chanics to ensembles of atoms and molecules. The bulk of the
computation is in calculating the short-range force between all
particle pairs i and j:

Fshort
ji

rji
= Aabr

−14
ji + Babr

−8
ji + QQab(r

−3
ji +

g′
a(r)

r
) (1)

where Aab, Bab, and QQab are distance-independent coefficient
look-up tables indexed with atom types a and b.

The key aspect of MD with respect to this discussion is that
the complexity of each the computation Fshort

ji depends on the

rji. When rji > rc then Fshort
ji = 0 and no force needs to be

computed at all. On the other hand, when rji approaches the
van der Waals radius rvdW , then the r−14

ji term dominates and
maximal precision is needed. For most of rvdW + ε < rji < rc

single precision is sufficient for most of the computation.
The overall design is shown if Figure 1. The main idea is

to process the bulk of the particle pairs quickly and with little
hardware but to allocate sufficient hardware for the particle
pairs that need it. Processing proceeds as follows.

1. The first step takes place on the host: sorting particles
into cells. This operation takes only a few hundred mi-
croseconds.

2. Processing on the FPGA proceeds cell-by-cell. For each
“home” cell, the cell neighborhood is loaded from off-chip
memory (POS SRAM into POS Cache).



POS Cache

Filter Bank

ACC Cache

POS SRAM

Summation

ACC SRAM

Filter

Buffer

Filter

Buffer

Force Pipeline

Position

0 Acceleration

Figure 1: Schematic of the HPRC MD system.

3. Now for each particle i in the home cell and for each
particle j in the cell neighborhood, rji is computed (Filter
Bank). Particle pairs with rvdW + ε < rji < rc are passed
on to the Force Pipelines.

4. The forces between the remaining particle pairs are com-
puted and accumulated.

Steps 1 and 2 construct the cell lists, Step 3 the neighbor lists,
and Step 4 the actual force computation.

In our current system (see [1]), based on a Stratix-III SE260,
there are 10 force pipelines and 8 filter pipelines per force
pipeline. For operating frequency we currently achieve 200MHz.
The design operates at over 90% efficiency. For the 90K particle
ApoA1 benchmark, the short-range force for a single iteration
is computed in less than 20ms for a 90-fold per-core speed-up.

3. MOLECULAR DOCKING
Molecular docking refers to the non-covalent bonding be-

tween molecules. Docking is often computed by mapping the
molecules’ characteristics to 3D grids. The most energetically
favorable relative position is then found by summing the voxel-
voxel interaction values for each modeled force at all positions,
to generate a score, and then repeating this for all possible
translations and rotations. On serial computers (and GPUs)
this computation is cast as a series of FFTs.

There are two key aspects of the docking computation for this
discussion. The first is that the molecules’ grid characteristics
are low precision with 7-8 bits generally being sufficient. The
second is that FPGAs perform direct convolution at very high
efficiency (see [4]).

As a result for small molecule docking (one molecule 1283,
the other up to 123) the FPGA achieves a per-core speed-up
of 25x to 35x. For protein-protein docking (both molecules up
to 1283) the superior asymptotic complexity of the FFT takes
over and the GPU is superior [5].

4. DISCRETE MOLECULAR DYNAMICS
In contrast with traditional MD, molecular dynamics simu-

lation based on discrete event simulation (DMD) uses simpli-
fied discretized models enabling simulations to be advanced by
event rather than by time-step. A DMD system consists of the

• System State, which contains the particle characteris-
tics: velocity, position, time of last update, and type;

• Event Predictor, which transforms the particle charac-
teristics into pairwise interactions (events);

• Event Processor, which turns the events back into par-
ticle characteristics; and

• Event Priority Queue, which holds events waiting to
be processed ordered by time-stamp.

C
om

m
it

Event
Predictor

Event
Processor

Event
Priority
Queue

New Event
Insertions

Stall Inducing
Insertions

Invalidations

Event flow
Update
state

Figure 2: DMD with a pipelined event processor.

The main idea in the FPGA design is to process DMD in a
single pipeline (as shown in Figure 2). That is, while a large
number of events can be processed simultaneously, at most one
event at a time is committed. Viewed another way, this de-
sign is of a microarchitecture that processes events rather than
instructions: the logic is analogous to that used in modern high-
end CPUs for speculative instruction execution. And as with a
high-end CPU, keeping the pipeline moving requires complex
high-bandwidth low-latency communication.

Current DMD codes are highly efficient and process events
in about 10us. Since execution is chaotic, parallelizing DMD
is challenging. Event executions can cause events to be inval-
idated and inserted anywhere in the queue. With substantial
care (e.g., hand-written locks) we achieve speed-ups with four
cores of a multicore CPU [2]. On the FPGA we execute events
at a small multiple of the clock rate for a speed-up of 50x-100x.

5. CONCLUSION
We have described three floating point intensive applications

where FPGAs are highly competitive. In each case the appli-
cation lends itself to the strengths of the FPGA: flexible pre-
cision; support for communication that is complex, lowlatency,
and high bandwidth; and support for custom FP pipelines.

6. REFERENCES
[1] Chiu, M., and Herbordt, M. Efficient filtering for molecular

dynamics simulations. In Proc. IEEE Conference on Field
Programmable Logic and Applications (2009).

[2] Herbordt, M., Khan, M., and Dean, T. Parallel discrete
event simulation of molecular dynamics through event-
based decomposition. In Proc. International Conference on
Application Specific Systems, Architectures, and Processors
(2009), p. TBD.

[3] Langhammer, M. Floating point datapath synthesis for FP-
GAs. In Proc. IEEE Conference on Field Programmable
Logic and Applications (2008), pp. 355–360.

[4] Sukhwani, B., and Herbordt, M. Acceleration of a produc-
tion rigid molecule docking code. In Proc. IEEE Confer-
ence on Field Programmable Logic and Applications (2008),
pp. 341–346.

[5] Sukhwani, B., and Herbordt, M. GPU acceleration of a pro-
duction molecular docking code. In Proc. General Purpose
Computation Using GPUs (2009).


