
Optimizing An Innovative SAR Post-Processing Algorithm for Multi-Core
Processors: A Case Study

Peter Carlston, Intel Corporation, peter.carlston @intel.com; Dave Murray, N.A. Software Ltd., davem @nasoftware.co.uk

Project Background
A major US defense contractor asked NA Software, Ltd.
(NASL) and Intel Corporation’s Embedded and
Communications Group to multi-thread a new Synthetic
Aperture Radar (SAR) post-processing algorithm developed
by Dr. Chris Oliver, CBE, of InfoSAR. The goal was to
understand how the performance of the original serial
algorithm would scale when it was multi-threaded and run
across 1-24 processor cores. Dr. Oliver’s “SARMTI”
algorithm is able to detect a large number of moving objects
at full SAR resolution, determine the motion of all objects
at about 10X the accuracy of Moving Target Indication
(MTI) systems, and then automatically register their
accurate position on the background SAR image. It does
this from the raw SAR data image itself, so there is no need
for a separate MTI radar system, with the manual
registration and correlation of MTI and SAR images
collected during different time periods that has often been
required in the past.

We illustrate typical SARMTI performance below. Figure 1
shows a portion of a simulated SAR image of four moving
targets against a realistic clutter background, with target
positions demoted by the green ovals. Each target has a
combination of the three motion components. Note how
target movement both blurs and shifts its observed image.
This well-known phenomena occurs because SAR systems
measure low frequency information.

Figure 1: Part of a typical SAR image showing shifting and

blurring of four moving targets.

Figure 2 shows the results after the SARMTI algorithm is
used to process the same SAR image data. SARMTI utilizes
all frequency information in the radar return, so it is able to
measure and report across-track acceleration and along-
track velocity, in addition to the across-track velocity
measured in typical MTI systems. SARMTI has also
automatically registered the actual locations of the targets
on the background SAR image (red circles).

Note that the target positions are accurate to within about 1
pixel. The three associated motions are also measured
within the predicted accuracy.

Figure 2: SARMTI has correctly determined the actual

positions of the moving targets (red circles) from the same
SAR image data

Method
We first used the GNU profiler ‘gprof’ to determine the
percentage of time being spent in each function of the serial
(non-threaded) code. The data showed that compressing
complex data (FFT function calls and other compression)
accounted for 64% of the overall time; 30% of the time was
spent detecting targets. NASL then threaded the
compression and detection portions of the code over a
period of about six weeks. They have worked closely with
Dr. Oliver for some time, and so were also able to optimize
the algorithm during the threading process. The resulting
overall algorithm structure is shown in Figure 3.

Raw SAR Image Data
In Memory (> 14 MB/image)

Figure 3: Conceptual diagram of SARMTI

The SARMTI post-processing algorithm begins after a raw
SAR image (>14 MB) is loaded into memory. Some serial
(non-threaded) processing is done at the beginning, then
again during a small synchronization process in the middle
and then at the end to display the image. But during the data
compression and target detection phases, data tiles are
processed independently on each core (represented by the
TH[read] boxes.) NASL used processor affinity to assign
specific threads to specific cores or processors; they also
tried letting Linux dynamically place each process on the

THTHTH TH TH . . . TH
Compress

Serial
Code

C
Data
omplex

Detect
Targets THTHTH TH TH . . . TH

Serial
Code

Serial
Code

Display
SARMTI
Image

core with the least load. Analysis showed that core
utilization was in fact quite balanced either way, with no
significant variation in performance.

SARMTI contains many billions of FFT and math
operations, so we next turned our attention to optimizing
those algorithms. The original SARMTI code used FFT
performance libraries from FFTW1, so the Intel Math
Kernel Library (MKL) ”FFTW Wrappers“ were substituted.
In addition, the original C versions of complex vector add,
conjugate, and multiply operations were replaced with the
corresponding functions in the Intel MKL. Testing showed
that speed up from utilizing MKL ranged from 14.7 to 18.4
percent.

After the initial threading and benchmarking on a system
with 16 processor cores (four processors of four cores
each), we used gprof to re-profiled the code in preparation
for running it on a 24-core system (four processors of six
cores each). gprof, however, shows only the time spent in
each routine; when a routine is not at the end of a
processing chain, this can be misleading. NASL therefore
also timed the code stages. The results showed that the
(serial) target record creation function was a good candidate
for threading when the number of cores approached 24 core
system used for the final benchmarking It turned out that
threading this routine increased the speed of the
SARMTI algorithm by 10% for 24 threads

Results With Simulated SAR Image
Table 1 summarizes the overall results of these efforts when
the multi-threaded algorithm was run on the four-socket
Intel rack mount server2.

Time in Seconds per Hardware
Threads (Cores)

Test
Case

Serial
Time

(sec) 1 2 4 8 16 24

Speed
Up

1T
24T

Total
Speed

Up
0
24T

1 85.4 37.0 18.8 9.9 4.9 3.6 2.2 16.8X 38.8X

2 120.2 47.9 24.6 12.9 6.7 4.8 3.1 15.5X 38.8X

3 104 35.6 18.3 9.6 4.8 3.5 2.1 17.0X 49.5X

4 166.2 67.1 33.9 17.8 9.6 6.6 4.4 15.3X 37.8X

Figure 4: Total SARMTI Performance Increase:
0-24 Cores (in seconds)

(4x Intel® Xeon® Processors MP7460, 6 cores each)

Four scenarios were tested:

1 See http://www.fftw.org
2 Intel SFC4UR rack mount server, with 4 Intel Xeon Processors MP
X7460 running at 2.66 GHz, with six cores each, and a 16 MB L2 cache
shared across all six cores. The system’s front side bus frequency was set
at 1066 MHz The system was configured with 16MB of 667 MHz
FBDIMMs. OS, Library, and compile flags information: Fedora Release 8
(Werewolf) for x86_64 architecture. Intel Math Kernel Library version
10.0. gcc 4.1.2 with compile flags -mfpmath=sse -msse4a -m64 -O4 -Wall

• Test 1: No targets; flat background

• Test 2: 10 targets; flat background

• Test 3: No targets; structured rural background

• Test 4: 10 targets; structured rural background

The overall speed up from the original serial code to the
multi-threaded code running with 24 threads across 24
cores ranged between 37.5 and 49.5 times. As mentioned,
the performance gains from the original, serial code to the
multi-threaded version (1T) were realized by optimizing the
algorithm during the multi-threading process and by using
the Intel MKL library. The speed-up from multi-threaded
code running on 1 core to 24 threads running on 24 cores
was between 15.3 and 17.0 for the four test scenarios.

Figure 3 graphs how performance scaled per core.

Figure 3: SARMTI Scalability graphed per number of cores

The slope of the curves shows that SARMTI scales quite
well from one to eight cores. The rate of increase slows
after eight threads/cores, but performance did continue to
increase all the way out to 24 threads.

A number of areas were investigated to see if scaling per
core could be increased. Neither front side bus nor memory
bandwidth turned out to be issues. Cache thrashing was also
not a problem since we had been careful to use localized
memory for each thread. Early portions of the data
compression stage are the only place where threads do
process data from the same area of memory since they are
all starting with the same input image. But changing the
algorithm to make N copies of the image and then
processing that unique memory block on each thread
introduced overhead that actually increased execution
times.

It turned out that some parts of the algorithm simply
threaded more efficiently than others. Different portions of
the algorithm use differently sized data sets, whose sizes
change dynamically as the geometry changes. Some of the
resulting data sets simply do not thread efficiently across 24
cores.

