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Project Background 
A major US defense contractor asked NA Software, Ltd. 
(NASL) and Intel Corporation’s Embedded and 
Communications Group to multi-thread a new Synthetic 
Aperture Radar (SAR) post-processing algorithm developed 
by Dr. Chris Oliver, CBE, of InfoSAR.  The goal was to 
understand how the performance of the original serial 
algorithm would scale when it was multi-threaded and run 
across 1-24 processor cores.   Dr. Oliver’s “SARMTI” 
algorithm is able to detect a large number of moving objects 
at full SAR resolution, determine the motion of all objects 
at about 10X the accuracy of Moving Target Indication 
(MTI) systems, and then automatically register their 
accurate position on the background SAR image.  It does 
this from the raw SAR data image itself, so there is no need 
for a separate MTI radar system, with the manual 
registration  and correlation of MTI and SAR images 
collected during different time periods that has often been 
required in the past.   

We illustrate typical SARMTI performance below. Figure 1 
shows a portion of a simulated SAR image of four moving 
targets against a realistic clutter background, with target 
positions demoted by the green ovals. Each target has a 
combination of the three motion components. Note how 
target movement both blurs and shifts its observed image. 
This well-known phenomena occurs because SAR systems 
measure low frequency information.    

 
Figure 1: Part of a typical SAR image showing shifting and 

blurring of four moving targets.    

Figure 2 shows the results after the SARMTI algorithm is 
used to process the same SAR image data. SARMTI utilizes 
all frequency information in the radar return, so it is able to  
measure and report across-track acceleration and along-
track velocity, in addition to the across-track velocity 
measured in typical MTI systems.  SARMTI has also 
automatically registered the  actual locations of the targets 
on the background SAR image (red circles).      

Note that the target positions are accurate to within about 1 
pixel. The three associated motions are also measured 
within the predicted accuracy. 

 
Figure 2: SARMTI has correctly determined the actual 

positions of the moving targets (red circles) from the same 
SAR image data    

 

Method 
We first used the GNU profiler ‘gprof’ to determine the 
percentage of time being spent in each function of the serial 
(non-threaded) code.  The data showed that compressing 
complex data (FFT function calls and other compression) 
accounted for 64% of the overall time; 30% of the time was 
spent detecting targets.  NASL then threaded the 
compression and detection portions of the code over a 
period of about six weeks.  They have worked closely with 
Dr. Oliver for some time, and so were also able to optimize 
the algorithm during the threading process.  The resulting 
overall algorithm structure is shown in Figure 3.  

Raw SAR Image Data
In Memory ( > 14 MB/image)

 
Figure 3: Conceptual diagram of SARMTI 

The SARMTI post-processing algorithm begins after a raw 
SAR image (>14 MB) is loaded into memory. Some serial 
(non-threaded) processing is done at the beginning, then 
again during a small synchronization process in the middle 
and then at the end to display the image. But during the data 
compression and target detection phases, data tiles are 
processed independently on each core (represented by the 
TH[read] boxes.)   NASL used processor affinity to assign 
specific threads to specific cores or processors; they also   
tried letting Linux dynamically place each process on the 
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core with the least load. Analysis showed that core 
utilization was in fact quite balanced either way, with no 
significant variation in performance. 

SARMTI contains many billions of FFT and math 
operations, so we next turned our attention to optimizing 
those algorithms. The original SARMTI code used FFT 
performance libraries from FFTW1, so the Intel Math 
Kernel Library (MKL) ”FFTW Wrappers“ were substituted. 
In addition, the original C versions of complex vector add, 
conjugate, and multiply operations were replaced with the 
corresponding functions in the Intel MKL. Testing showed 
that speed up from utilizing MKL ranged from 14.7 to 18.4 
percent.   

After the initial threading and benchmarking on a system 
with 16 processor cores (four processors of four cores 
each), we used gprof to re-profiled the code in preparation 
for running it on a 24-core system (four processors of six 
cores each).  gprof, however, shows only the time spent in 
each routine;  when a routine is not at the end of a 
processing chain, this can be misleading. NASL therefore 
also timed the code stages.  The results showed that the 
(serial) target record creation function was a good candidate 
for threading when the number of cores approached 24 core 
system used for the final benchmarking  It turned out that 
threading this routine increased the speed of the 
SARMTI algorithm by 10% for 24 threads 

Results With Simulated SAR Image 
Table 1 summarizes the overall results of these efforts when 
the multi-threaded algorithm was run on the four-socket 
Intel rack mount server2.  

Time in Seconds per Hardware 
Threads (Cores)  

Test 
Case 

Serial 
Time 

(sec) 1 2 4 8 16 24 

Speed 
Up 

1T  
24T 

Total 
Speed 

Up 
0  
24T 

1 85.4 37.0 18.8 9.9 4.9 3.6 2.2 16.8X 38.8X

2 120.2 47.9 24.6 12.9 6.7 4.8 3.1 15.5X 38.8X

3 104 35.6 18.3 9.6 4.8 3.5 2.1 17.0X 49.5X

4 166.2 67.1 33.9 17.8 9.6 6.6 4.4 15.3X 37.8X

 

Figure 4: Total SARMTI Performance Increase:                   
0-24 Cores  (in seconds)                                         

(4x Intel® Xeon® Processors MP7460, 6 cores each) 

   
                                             

Four scenarios were tested:  

                                                 
1 See http://www.fftw.org 
2  Intel SFC4UR rack mount server, with 4 Intel Xeon Processors MP 
X7460 running at 2.66 GHz, with six cores each, and a 16 MB L2 cache 
shared across all six cores.  The system’s front side bus frequency was set 
at 1066 MHz  The system was configured with 16MB of 667 MHz 
FBDIMMs.  OS, Library, and compile flags information: Fedora Release 8 
(Werewolf) for x86_64 architecture.  Intel Math Kernel Library version 
10.0. gcc 4.1.2 with compile flags -mfpmath=sse -msse4a -m64 -O4 -Wall 
 

• Test 1: No targets; flat background 

• Test 2: 10 targets; flat  background 

•  Test 3: No targets; structured rural background 

•  Test 4: 10 targets; structured rural background 

The overall speed up from the original serial code to the 
multi-threaded code running with 24 threads across 24 
cores ranged between 37.5 and 49.5 times. As mentioned, 
the performance gains from the original, serial code to the 
multi-threaded version (1T) were realized by optimizing the 
algorithm during the multi-threading process and by using 
the Intel MKL library.  The speed-up from multi-threaded 
code running on 1 core to 24 threads running on 24 cores 
was between 15.3 and 17.0 for the four test scenarios.  

Figure 3 graphs how performance scaled per core. 

 
Figure 3: SARMTI Scalability graphed per number of cores   

The slope of the curves shows that SARMTI scales quite 
well from one to eight cores. The rate of increase slows 
after eight threads/cores, but performance did continue to 
increase all the way out to 24 threads.   

A number of areas were investigated to see if scaling per 
core could be increased. Neither front side bus nor memory 
bandwidth turned out to be issues. Cache thrashing was also 
not a problem since we had been careful to use localized 
memory for each thread. Early portions of the data 
compression stage are the only place where threads do 
process data from the same area of memory since they are 
all starting with the same input image. But changing the 
algorithm to make N copies of the image and then 
processing that unique memory block on each thread 
introduced overhead that actually increased execution 
times.   

It turned out that some parts of the algorithm simply 
threaded more efficiently than others. Different portions of 
the algorithm use differently sized data sets, whose sizes 
change dynamically as the geometry changes. Some of the 
resulting data sets simply do not thread efficiently across 24 
cores. 


