

3D Exploitation of Large Urban Photo Archives*

High Performance Embedded Computing Workshop

Professor Noah Snavely Computer Science Department Cornell University

Peter Cho & Ross Anderson Active Optical Systems Group MIT Lincoln Laboratory

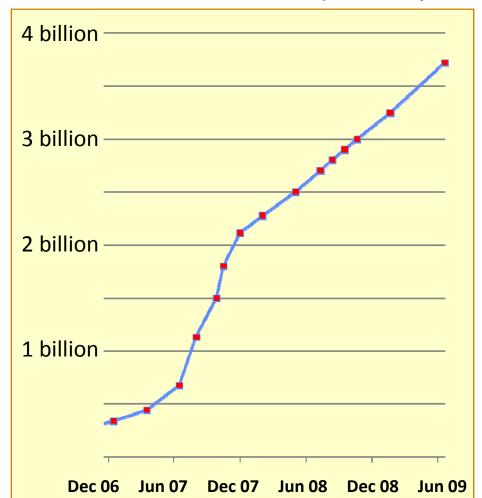
September 2009

*This work was sponsored by the Department of the Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

Problem Statement: Urban Digital Imagery Explosion

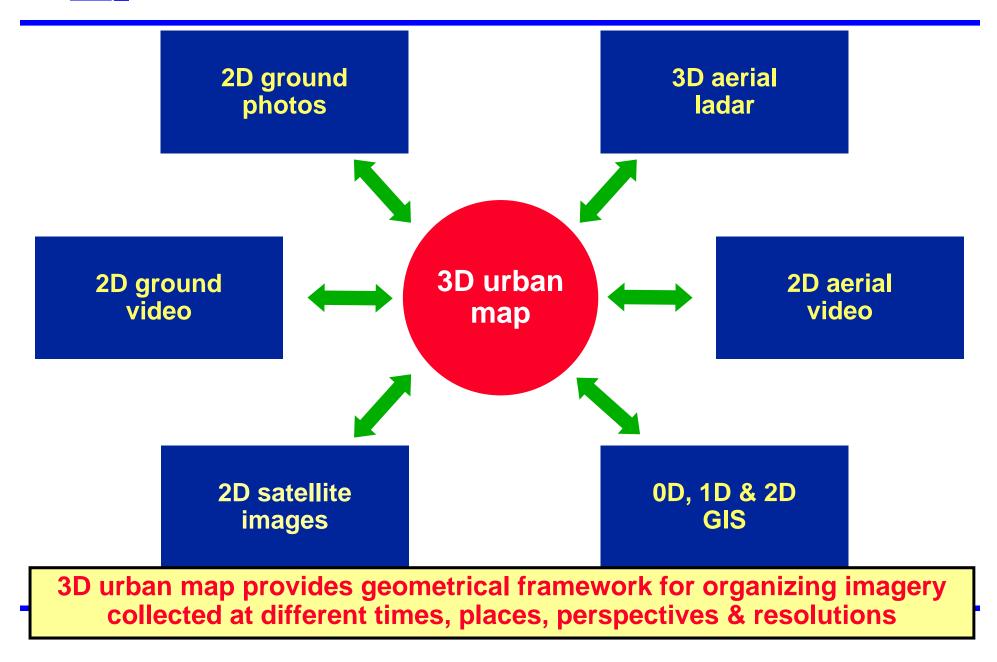
- Quantity & quality of digital urban imagery are rapidly increasing over time
- Vast numbers of photos shot by inexpensive digital cameras can be accessed via web
 - Recent Google search found
 237 million images matching
 New York City, 5.3 million for
 Baghdad & 2.4 million for Kabul
 - But no connection exists between retrieved thumbnails besides their having been shot in same metropolitan area
- Organizing principle is needed for navigating & exploiting large urban imagery archives



Total number of **flickr** website photos vs year

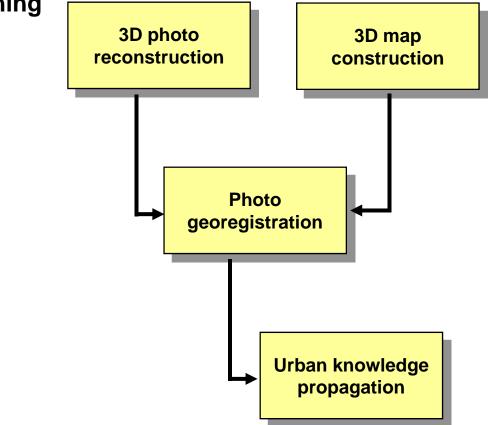
MIT Lincoln Laboratory

Multi-Source Image Organization



Outline

- 3D photo reconstruction
 - SIFT feature detection & matching
 - Structure from motion
 - LLGrid parallelization
- 3D map construction
- Photo georegistration
- Urban knowledge propagation
- Ongoing & future work



MIT Lincoln Laboratory

HPEC 4 NS,PC,RA 10/2/2009 Structured Output from Unstructured Input

	flickr Home You - Organize	- Contacts - Groups - Explore -	Sigr
	Search	Photos Groups People	
	Everyone's Uploads	manhattan financial district	SEARCH
So	rt: Most relevant 👻	View: Small Viewing Sideshow	*
	From Scott From gustavofolig	From gustavofolig	 640)
		From Scandblue	Alya
	Subling Barbaro		
F	From Ben Tov	Seltz & Szeliski, 2006]	
		From Willem van	n Laboratory

Structured Output from Unstructured Input



SIFT Feature Detection & Matching

• Extract Scale Invariant Feature Transform (SIFT) features [Lowe, 2004]

SIFT features extracted from 2 photos with partially overlapping views

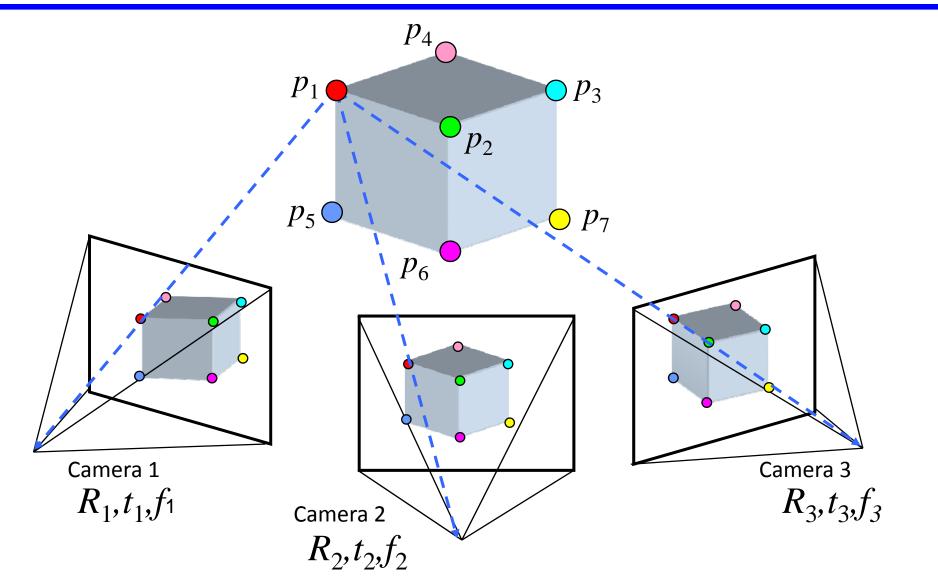
HPEC 7 NS,PC,RA 10/2/20

SIFT Feature Detection & Matching

- Extract Scale Invariant Feature Transform (SIFT) features [Lowe, 2004]
- Identify feature tiepoint matches
 - Use Approximate Nearest Neighbor algorithm to search 128-dim vector space
- Employ Random Sample Consensus to minimize false tiepoint pairings

SIFT features extracted from 2 photos with partially overlapping views

Structure from Motion



MIT Lincoln Laboratory

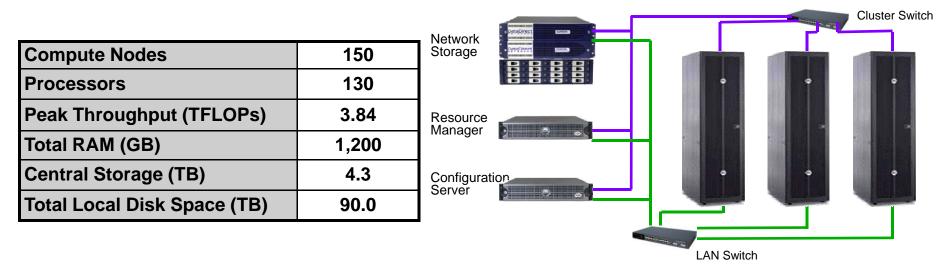
Statue & Skyline Reconstruction

- Relative positions & poses for 1012 cameras automatically determined
 - Camera covariance matrices also provide reconstruction uncertainty estimates
- Target 3D geometry contained in sparse point cloud output

Naïve Computational Complexity

- SIFT feature detection
 - O(n) where n = number of photos
 - Embarrassingly parallel (each image can be independently processed)
- SIFT feature matching
 - O(n²) when matching must be performed for each pair of uncooperatively collected photos
 - Embarrassingly parallel (each match can be independently processed)
- Structure from motion
 - Optimization problem for camera & target point parameters
 - Thousands of cameras & millions of points generate millions of parameters to determine via nonlinear objective function
 - Solving nonlinear least squares optimization is at worst $O(n^4)$ (but often faster)
 - More difficult to parallelize (but investigating parallel least squares solvers)

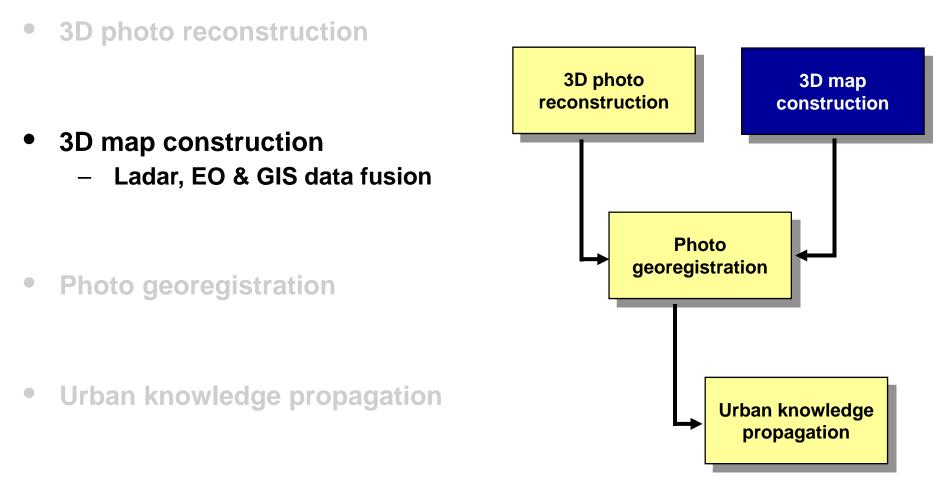
• 3D photo reconstruction has been parallelized on Lincoln Lab's Grid [Travinin-Bliss et al, 2006]



 Timing results for 1012 NYC internet photo collection processed using 128 LLGrid compute nodes

SIFT feature detection	5 minutes	
SIFT feature matching	2 hours	
Structure from motion	2 hours	
Total run time	4 hours	
	MIT Lincoln Laboratory	

Outline

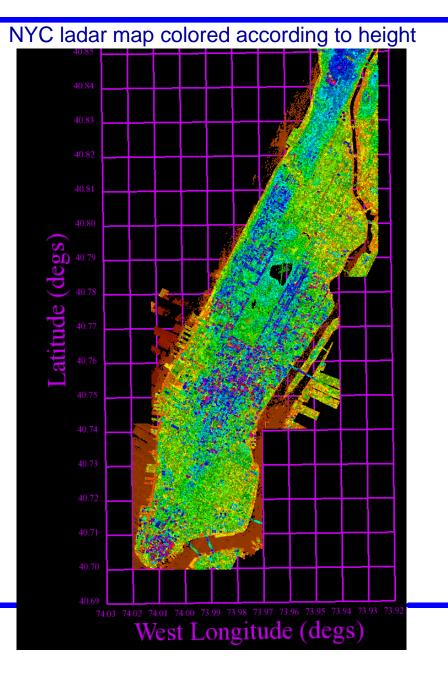


• Ongoing & future work

MIT Lincoln Laboratory

Urban Laser Radar Underlay

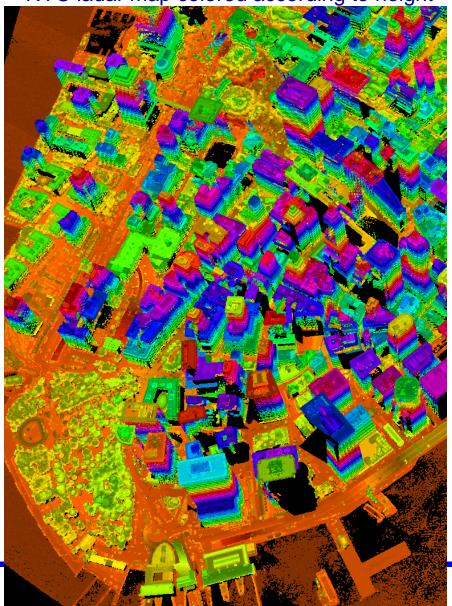
- High-resolution ladars provide 3D geometry backdrops for urban regions
 - Wide area ladar maps of entire cities are commercially available
- As a representative example, work with Rapid Terrain Visualization ladar imagery collected over New York City in Oct 2001
 - 1 meter ground sampling distance
 - Polynomial warp used to lock point cloud onto absolute longitude/latitude grid
 - Maximum local georegistration error \approx 2 meter



HPEC 14 NS,PC,RA 10/2/2009

Urban Laser Radar Underlay

- High-resolution ladars provide 3D geometry backdrops for urban regions
 - Wide area ladar maps of entire cities are commercially available
- As a representative example, work with Rapid Terrain Visualization ladar imagery collected over New York City in Oct 2001
 - 1 meter ground sampling distance
 - Polynomial warp used to lock point cloud onto absolute longitude/latitude grid
 - Maximum local georegistration error \approx 2 meter

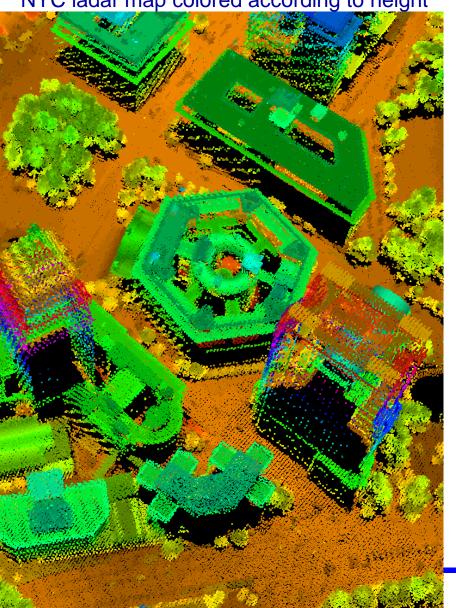


NYC ladar map colored according to height

HPEC 15 NS,PC,RA 10/2/2009

Urban Laser Radar Underlay

- High-resolution ladars provide 3D geometry backdrops for urban regions
 - Wide area ladar maps of entire cities are commercially available
- As a representative example, work with Rapid Terrain Visualization ladar imagery collected over New York City in Oct 2001
 - 1 meter ground sampling distance
 - Polynomial warp used to lock point cloud onto absolute longitude/latitude grid
 - Maximum local georegistration error \approx 2 meter



NYC ladar map colored according to height

HPEC 16 NS,PC,RA 10/2/2009

Urban Electro-Optical Layer

- Fuse ladar voxels with EO pixels to correlate urban geometry & intensity information
 - Building lean is constant
 [variable] in overhead satellite
 [aerial] imagery
 - Parallax compensation is straightforward [tedious] when photos from satellites [aircraft] are fused with ladar data
- Work with NYC satellite image collected in Nov 2006
 - 0.8 meter ground sampling distance
 - Mid-morning collection time avoided cloud obscuration but yielded significant shadowing in extreme urban canyons

HPEC 17

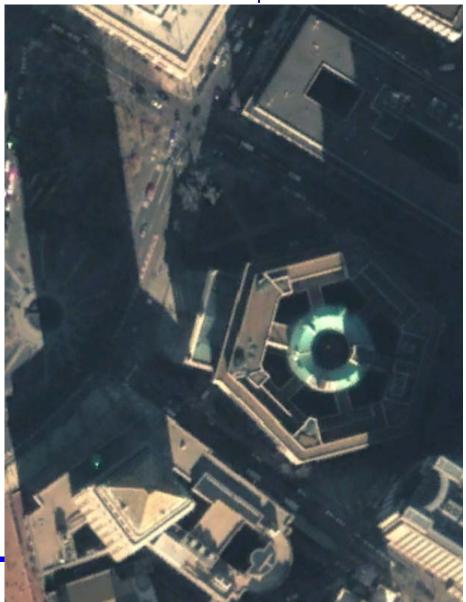
Urban Electro-Optical Layer

- Fuse ladar voxels with EO pixels to correlate urban geometry & intensity information
 - Building lean is constant
 [variable] in overhead satellite
 [aerial] imagery
 - Parallax compensation is straightforward [tedious] when photos from satellites [aircraft] are fused with ladar data
- Work with NYC satellite image collected in Nov 2006
 - 0.8 meter ground sampling distance
 - Mid-morning collection time avoided cloud obscuration but yielded significant shadowing in extreme urban canyons

Quickbird satellite photo of NYC

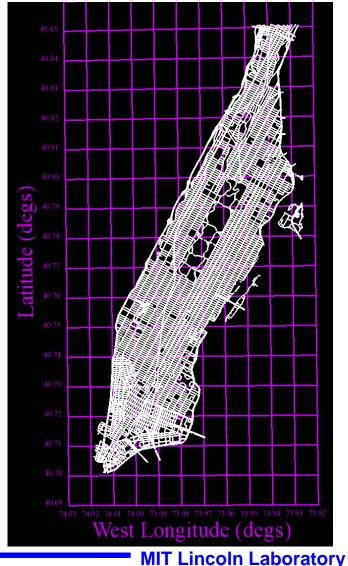
Urban Electro-Optical Layer

- Fuse ladar voxels with EO pixels to correlate urban geometry & intensity information
 - Building lean is constant
 [variable] in overhead satellite
 [aerial] imagery
 - Parallax compensation is straightforward [tedious] when photos from satellites [aircraft] are fused with ladar data
- Work with NYC satellite image collected in Nov 2006
 - 0.8 meter ground sampling distance
 - Mid-morning collection time avoided cloud obscuration but yielded significant shadowing in extreme urban canyons



Urban Geographic Information System Layers

- Fuse ladar voxels & EO pixels with GIS data to combine urban geometry, intensity & network information
 - e.g. 2D political districts, 1D transportation routes, 0D landmarks
 - Use ladar data to supply altitude information not generally included in GIS databases
- GIS layers for New York City have become more tightly controlled after Sept 11, 2001
 - But some roadway, subway & local landmark shape files are still accessible on the web



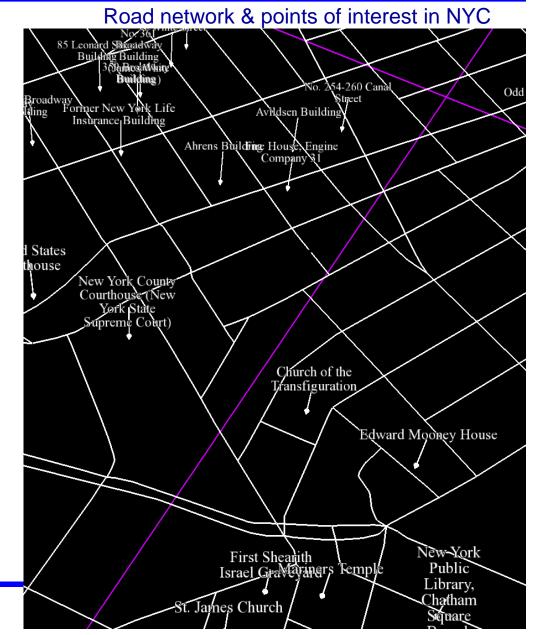
Urban Geographic Information System Layers

- Fuse ladar voxels & EO pixels with GIS data to combine urban geometry, intensity & network information
 - e.g. 2D political districts, 1D transportation routes, 0D landmarks
 - Use ladar data to supply altitude information not generally included in GIS databases
- GIS layers for New York City have become more tightly controlled after Sept 11, 2001
 - But some roadway, subway & local landmark shape files are still accessible on the web

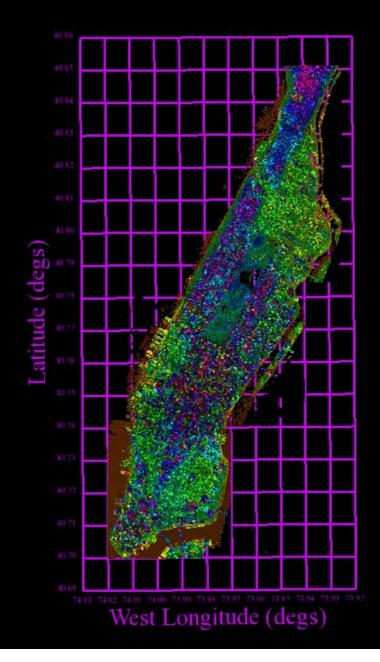
Road network & points of interest in NYC

Urban Geographic Information System Layers

- Fuse ladar voxels & EO pixels with GIS data to combine urban geometry, intensity & network information
 - e.g. 2D political districts, 1D transportation routes, 0D landmarks
 - Use ladar data to supply altitude information not generally included in GIS databases
- GIS layers for New York City have become more tightly controlled after Sept 11, 2001
 - But some roadway, subway & local landmark shape files are still accessible on the web

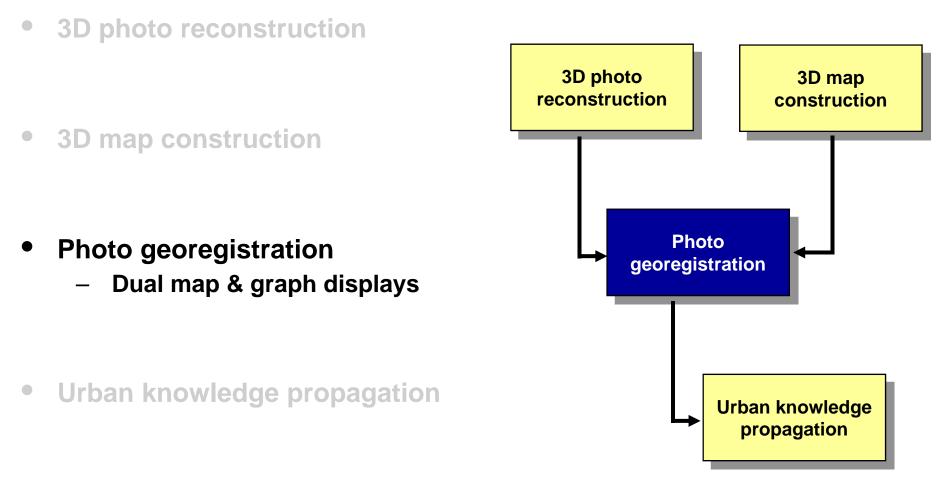


Fused 3D NYC Map [Cho, 2007]



MOVIE

Outline



• Ongoing & future work

HPEC 24 NS,PC,RA 10/2/2009 **MIT Lincoln Laboratory**

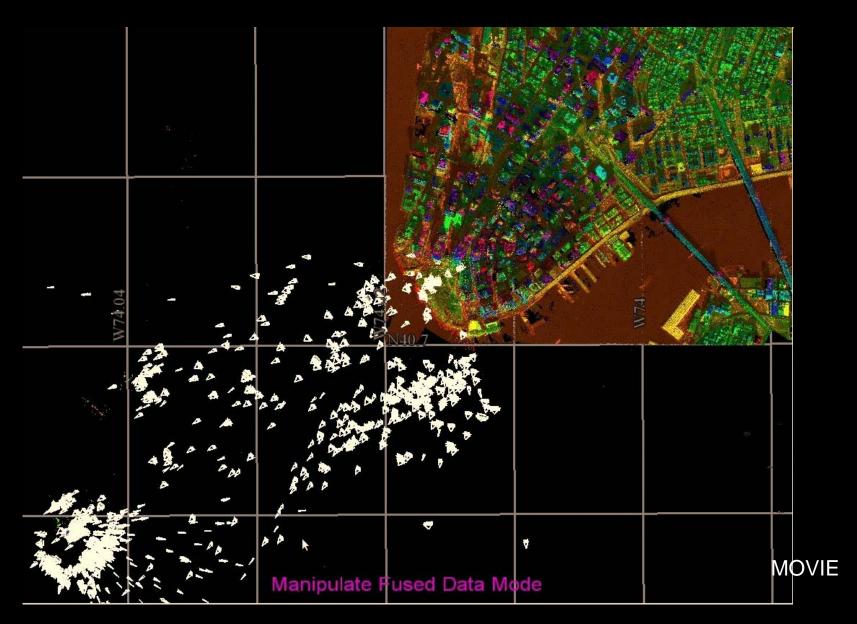
- Select 10 from 1012 reconstructed photos with low covariance traces
- Manually establish 33 tiepoint pairings between the 10 photos & ladar map
- Compute single global translation, rotation & scaling needed to register reconstructed photos with 3D NYC data

Lower Manhattan skyline photo

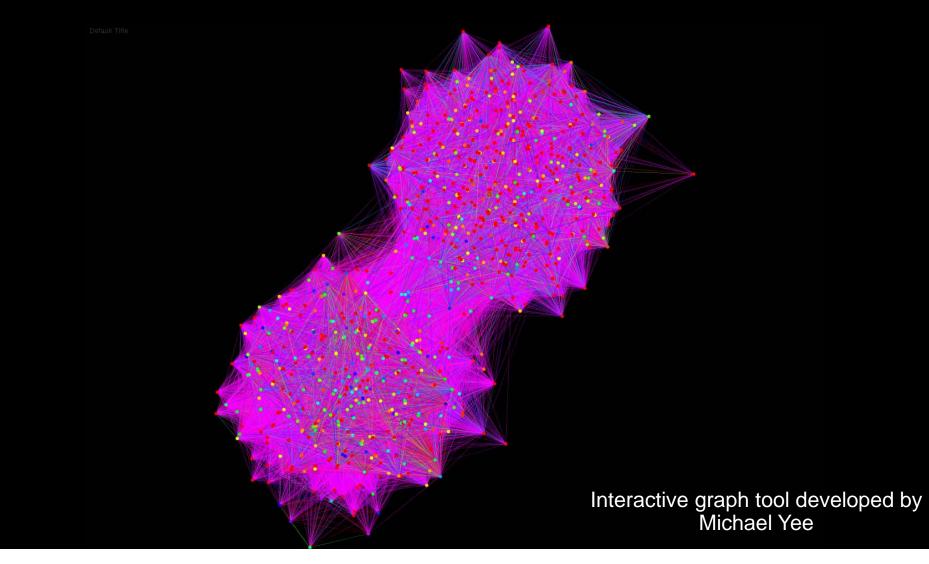
Grey-scale colored NYC ladar map

HPEC 25 NS,PC,RA 10/2/2009

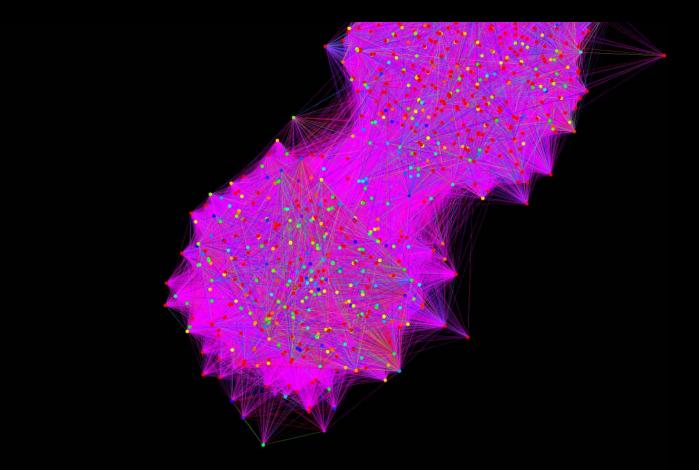
1012 Photos Georegistered with 3D Map



- Capture topological relationships among reconstructed photos in a graph
 - Nodes colored according to covariance trace
 - Edges colored according to SIFT feature overlap

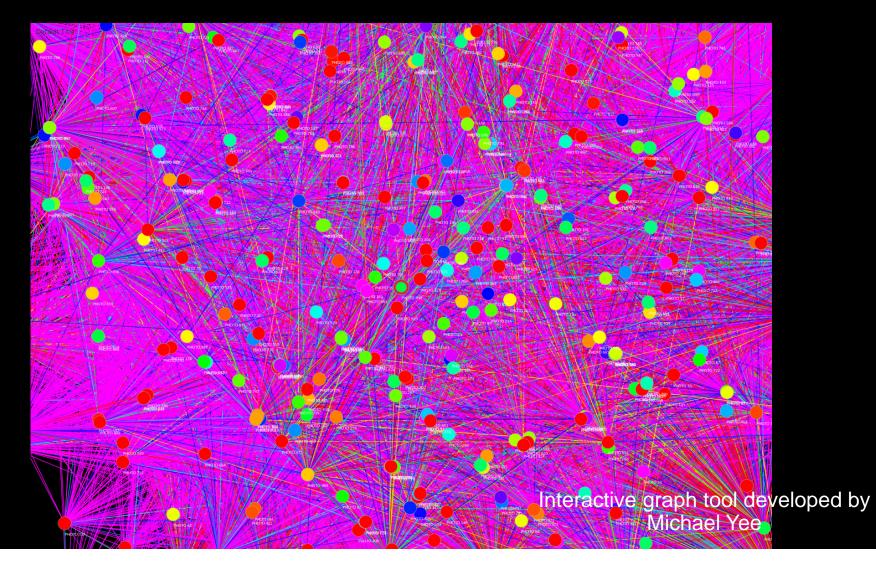


- Capture topological relationships among reconstructed photos in a graph
 - Nodes colored according to covariance trace
 - Edges colored according to SIFT feature overlap



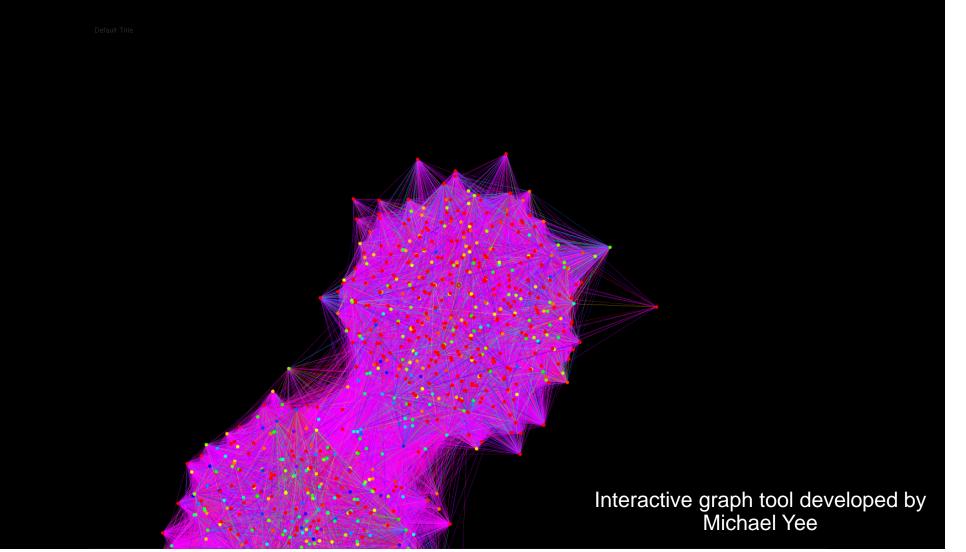
Interactive graph tool developed by Michael Yee

- Capture topological relationships among reconstructed photos in a graph
 - Nodes colored according to covariance trace
 - Edges colored according to SIFT feature overlap



- Capture topological relationships among reconstructed photos in a graph
 - Nodes colored according to covariance trace
 - Edges colored according to SIFT feature overlap

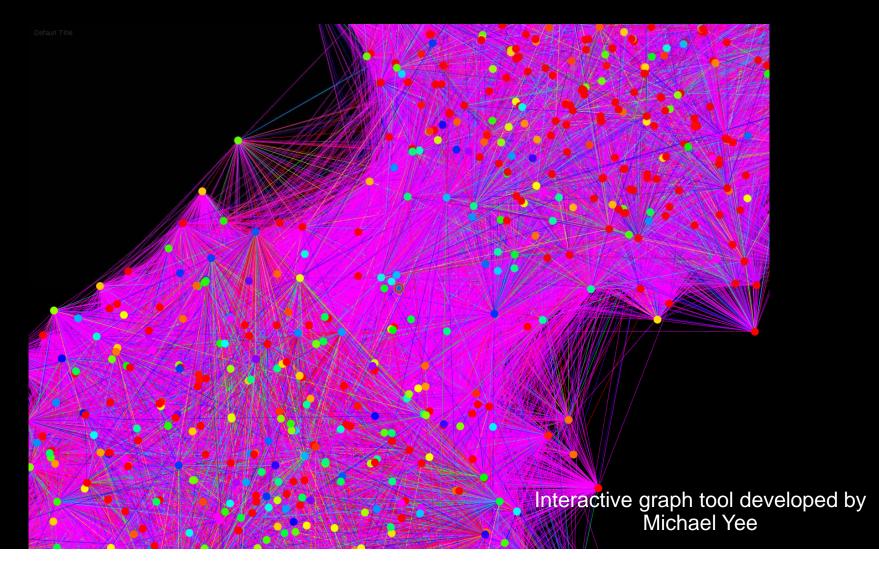
- Capture topological relationships among reconstructed photos in a graph
 - Nodes colored according to covariance trace
 - Edges colored according to SIFT feature overlap



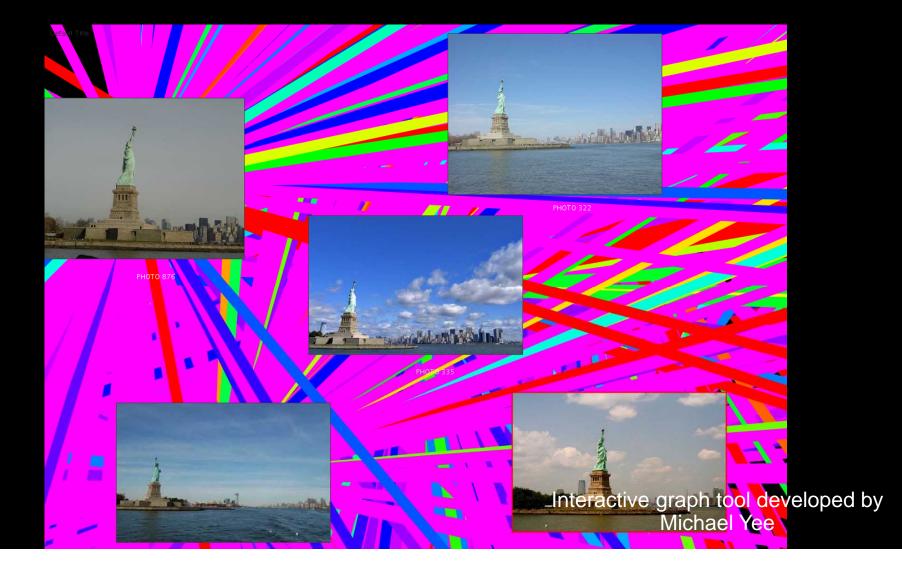
- Capture topological relationships among reconstructed photos in a graph
 - Nodes colored according to covariance trace
 - Edges colored according to SIFT feature overlap

- Capture topological relationships among reconstructed photos in a graph
 - Nodes colored according to covariance trace
 - Edges colored according to SIFT feature overlap

- Capture topological relationships among reconstructed photos in a graph
 - Nodes colored according to covariance trace
 - Edges colored according to SIFT feature overlap



- Capture topological relationships among reconstructed photos in a graph
 - Nodes colored according to covariance trace
 - Edges colored according to SIFT feature overlap



Outline

3D photo reconstruction 3D photo 3D map reconstruction construction **3D map construction** Photo georegistration Photo georegistration **Urban knowledge propagation** • Automatic feature annotation _ Urban knowledge Image based querying propagation

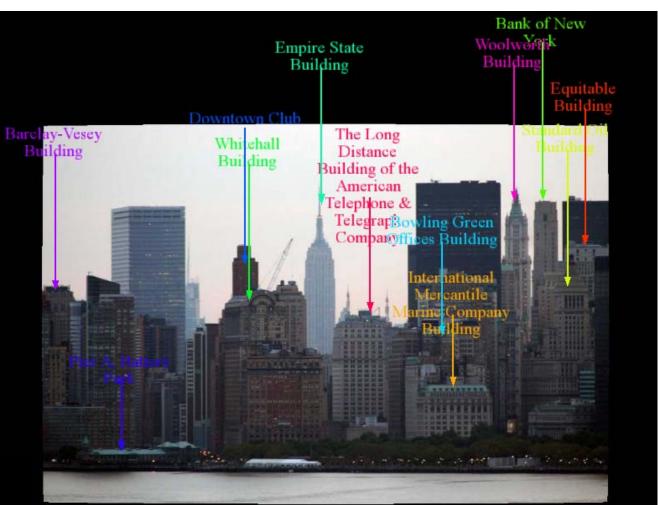
• Ongoing & future work

MIT Lincoln Laboratory

HPEC 36 NS,PC,RA 10/2/2009

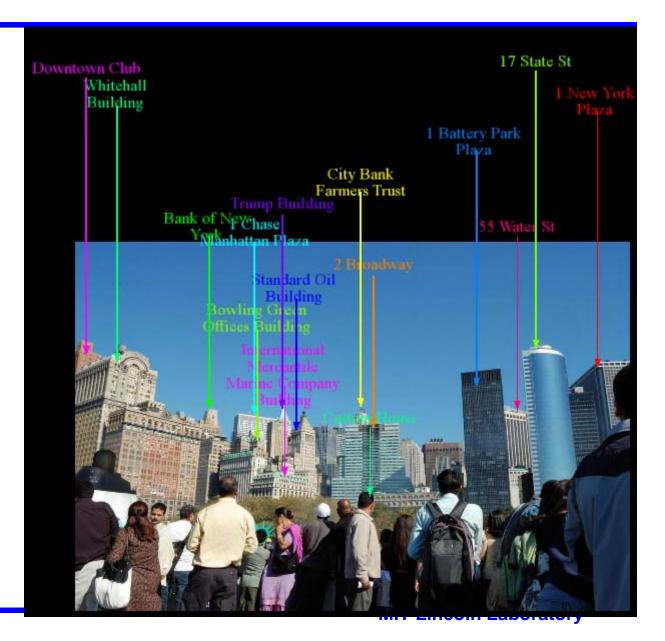
Automatic Feature Annotation

- Project high-level knowledge from 3D world-space into georegistered 2D image planes to automatically label pixel clusters
 - Absolute geopositions
 - Names for buildings & streets
 - Landmarks & regions of interest



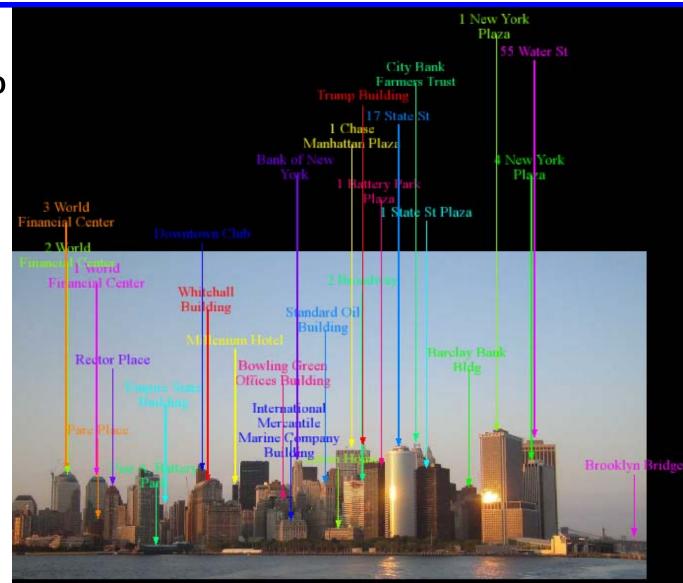
Automatic Feature Annotation

- Project high-level knowledge from 3D world-space into georegistered 2D image planes to automatically label pixel clusters
 - Absolute geopositions
 - Names for buildings & streets
 - Landmarks & regions of interest



Automatic Feature Annotation

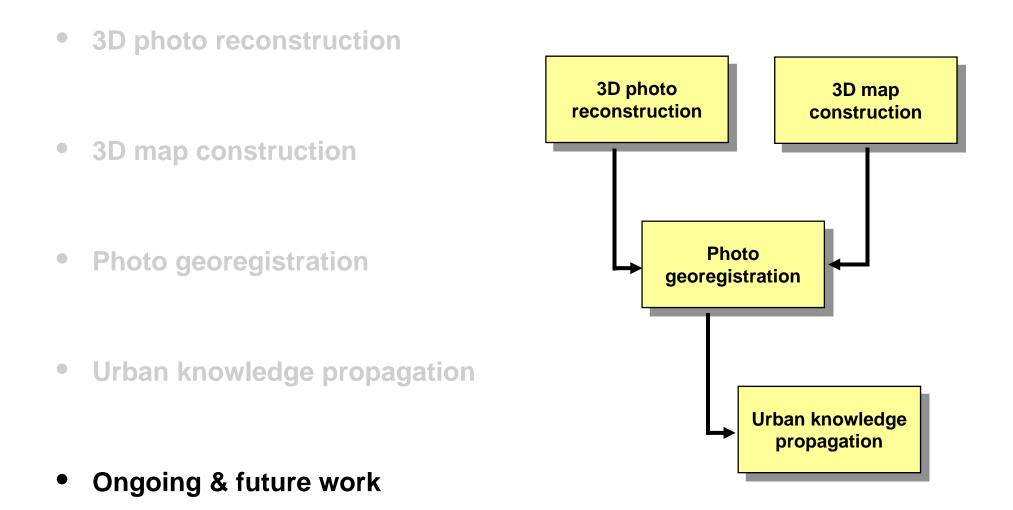
- Project high-level knowledge from 3D world-space into georegistered 2D image planes to automatically label pixel clusters
 - Absolute geopositions
 - Names for buildings & streets
 - Landmarks & regions of interest



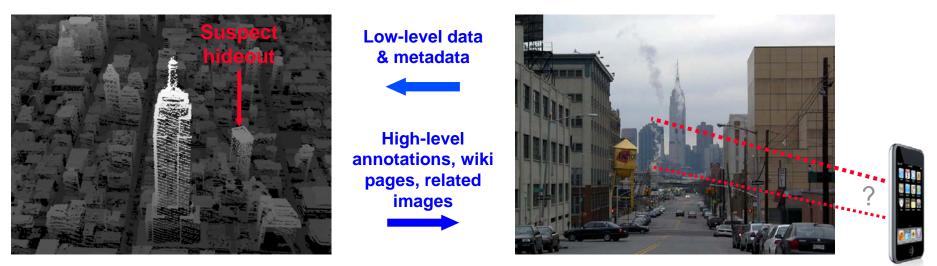
MIT Lincoln Laboratory

- Compute 3D voxel corresponding to user-selected 2D photo pixel
 - Assume skyscraper walls missing from ladar data are well approximated by rooftop extrusion
 - Take into account line-of-sight occlusion by walls when ray tracing
- Reproject voxel back onto all photos in which it is visible
- Return urban features' ranges & altitudes above sea-level

Outline



Server with virtual city map



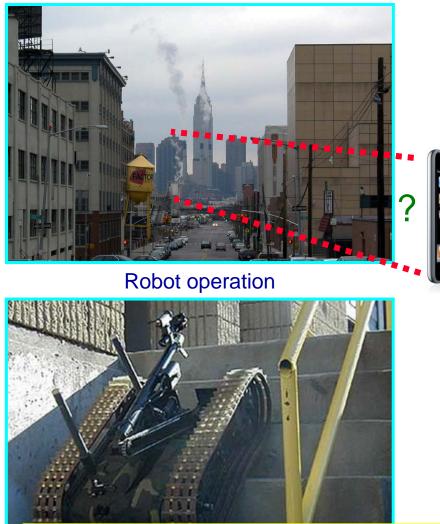
- Mark up outputs from mobile cameras operating in complex cities
 - Automatically project information about buildings & streets into instantaneous image planes as users walk, drive or fly through cities
 - Input photo regions rather than text strings into database queries
- LLGrid reconstruction & registration of 30,000+ photos shot around MIT campus is currently underway
 - Data set includes significant urban canyon occlusion
 - Data set includes outdoor & indoor imagery

MIT Lincoln Laboratory

Mobile clients probing real city

Future Applications

Augmented reality



Urban mission planning

UAV video monitoring

Mobile exploitation of urban imagery archives will require onboard embedded computing

- 3D geometry provides an organizing principle for 2D urban imagery
 - 3D photo reconstruction yields structured output from unstructured input
 - Ladar map registration endows photos with absolute geo-coordinates
 - Geometrical organization enables intuitive navigation of large archives
- Urban-sized photo collections can only be processed on parallelized clusters
 - SIFT feature detection & matching are embarrassingly parallel
 - Structure from motion requires nonlinear optimization over millions of parameters
 - 1000+ NYC skyline & statue photos reconstructed in 4 hours on LLGrid
- 3D exploitation of large urban photo archives is just beginning and its directions to explore are growing
 - Incorporating sensor metadata into reconstructions
 - Identifying coverage gaps & skeletal sets via graph techniques
 - Extending current text-only searching to image-based querying

Fused 3D NYC Map [Cho, 2007]

