

Multi-objective Optimization of Sparse Array Computations

Una-May O'Reilly

MIT Computer Science and Artificial Intelligence Laboratory

Nadya Bliss, Sanjeev Mohindra, Julie Mullen, Eric Robinson MIT Lincoln Laboratory

September 22nd, 2009

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

• MIT Lincoln Laboratory

HPEC 2009 Una-May O'Reilly

Outline

- Problem Context
 - Performance gap exists for graph algorithms that enable knowledge extraction in decision support systems
- Problem Definition
 - Performance optimization of sparse algebra matrix computations (for graph algorithms)
 - Sparse Mapping and Routing Toolbox
- Solution Methodology
 - multi-objective genetic algorithm to optimize
 - Second objective complements first: find ideal balance of operations for nodes in architecture.

Discernable from dependency graph

- Preliminary Results
- Future Work and Summary

Increasing need for knowledge processing

Knowledge Extraction Applications

NETWORK DETECTION

 Graph analysis for identifying interesting sub-networks within large noisy graphs*

• Bayesian networks for fusing imagery and ladar for better on board tracking

TOPOLOGICAL DATA ANALYSIS

 Higher dimension graph analysis to determine sensor net coverage

*A. Tahbaz Salehi and A. Jadbabaie, *Distributed coverage* verification in sensor networks without location information

	KEY ALGORITHM ────	KEY KERNEL
Network detection	 Edge Betweenness Centrality 	MATRIX MULT: A +.* B
Feature aided 2D/3D fusion	 Bayesian belief propagation 	MATRIX MULT: A +.* B
Dimensionality reduction	 Minimal Spanning Trees 	MATRIX MULT: X +.* A +.* X ^T
 Finding cycles on complexes 	 Single source shortest path 	D min.+ A

Many knowledge extraction algorithms are based on graph algorithms

MIT Lincoln Laboratory

HPEC-09- 4 U.M. O'Reilly 10/1/2009

*email network from http://www.mailchimp.com/blog/tag/social-networks/

Fundamental Observation -Graph-Sparse Matrix Duality-

Many graph algorithms can be expressed as *sparse array* computations

The Graph Processing Performance Gap

- Current technologies do not provide performance or power efficiency for knowledge extraction applications
- Emerging application trends require closing the performance gap

- Gap arises due to sparse and irregular graph data
- Mapping can be computed ahead of algorithm deployment

Efficient data mapping will help close gap

Outline

- Problem Context
- Problem Definition
- Solution Methodology
- Preliminary Results
- Future Work and Summary

SMaRT Sparse Mapping and Routing Toolbox

HPEC-09- 8 U.M. O'Reilly 10/1/2009

The Mapping Optimization Problem

Given

Evaluation of the objective function requires performance prediction

MIT Lincoln Laboratory

HPEC-09- 9 U.M. O'Reilly 10/1/2009

Mapping is NP-complete

Network Coding ≤_P Mapping with Muriel Médard, MIT EECS K-Clique ≤_P Mapping with Ben Miller, LL Gr 102

The search space of maps is extremely large:

Size of the mapping search space: $S_M = N_P^{(B)}$

The objective function is a simulation: values are discrete and Presumably non-convex

A global search technique (such as a genetic algorithm) is well-suited to mapping

Outline

- Problem Context
- Problem Definition
- Solution Methodology
- Preliminary Results
- Future Work and Summary

Genetic Algorithm Concepts

Neo-darwinian evolution
Population adaptation to an environment
Through biased selection based upon fitness of organism
through genetic inheritance, random recombination and variation

Evolution is a search-based optimization process •organism is a candidate solution to the environment •fitness of organism expresses performance on objective •adaptation is a search process that exploits and explores • the search proceeds in parallel via the population

Dependency Graph

DG is input to simulator and expresses where the data is mapped how the data is routed between processors what computations execute on each processor Topological sort of DG indicates what operations can proceed in parallel DG is complete specification of computation on the studied architecture

Dependency graph is tightly coupled with performance

Outline

- Problem Context
- Problem Definition
- Solution Methodology
- Preliminary Results
- Future Work and Summary

Analysis of Dependency Graph Characteristics

A multi-objective genetic algorithm can co-optimize map performance and balance

Co-optimization: Pareto Dominance

Better: A > B Map A performs faster imbalance of A is lower

"A dominates B" A's map and balance are both better than B's

Non Dominated A's map is better but B's balance is better

Or B's map is better but A's balance is better

No solution is better on both map and balance

Co-optimization front also known as estimated pareto front

Experimental Setup

Algorithm

Hybrid Inner-Outer Product

Architecture

Network Latency	50e-9 seconds	
Network Bandwidth	5e9 bytes/sec	
Memory Latency	50e-9 seconds	
Memory Bandwidth	12e9 bytes/sec	
CPU Rate	5e9 ops/sec	

4x4x4 Torus Topology

HPEC-09- 18 U.M. O'Reilly 10/1/2009

Optimization Algorithm Comparison

Baseline ADBC mapping is outperformed by Multi-Objective Genetic Algorithm

Co-optimization (MOGA) Results

Best solution is rightmost on performance (x-axis)

Over the run, the non-dominated front migrates toward solutions with better memory balance and performance

Non-dominated front never becomes singular indicating co-optimization is beneficial

Mean memory imbalance decreases over time under co-optimization objectives (while performance improves)

Complexity of best map fluctuates

Hardware Model Parametric Study

HPEC-09- 21 U.M. O'Reilly 10/1/2009

- Co-optimization objective should reflect relation between algorithm and structure of architecture
 - Knowledge-based analysis: Consider metrics of parallelism of program or graph
 - Statistical Analysis: Regress relationship between properties and performance from a sample of maps on the architecture
- Power co-optimization (in conflict with FLOPS) via the multi-objective, paretobased Genetic Algorithm

- Graph algorithms expressed in linear algebra expose a map optimization problem
 - Map optimization can be improved by cooptimizing the performance and algorithm complexity with a multi-objective GA
- Better maps close the performance gap of graph algorithms
- Improved performance of graph algorithms addresses challenges of rapid knowledge extraction
- Rapid knowledge extraction enables effective decision support

