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Outline

• Problem Context
P f i t f h l ith th t– Performance gap exists for graph algorithms that 
enable knowledge extraction in decision support 
systems

• Problem DefinitionProblem Definition
– Performance optimization of sparse algebra matrix 

computations (for graph algorithms)
– Sparse Mapping and Routing Toolboxp pp g g

• Solution Methodology
– multi-objective genetic algorithm to optimize 
– Second objective complements first: find ideal balanceSecond objective complements first: find ideal balance 

of operations for nodes in architecture.
Discernable from dependency graph

• Preliminary Results
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• Future Work and Summary



Emerging Decision Support Trends
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• Enormous growth in data size coupled with multi-• Enormous growth in data size coupled with multi-g p
modalities

• Increasing relevance in relationships between 
data/objects/entities

• Increasing algorithm & environment complexities 
• Asymmetric & fast evolving warfare

g p
modalities

• Increasing relevance in relationships between 
data/objects/entities

• Increasing algorithm & environment complexities 
• Asymmetric & fast evolving warfare

Focus on Top of the Pyramid: 
Knowledge Extraction and 

Focus on Top of the Pyramid: 
Knowledge Extraction and 
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• Asymmetric & fast-evolving warfare
• Increasing need for knowledge processing
• Asymmetric & fast-evolving warfare
• Increasing need for knowledge processing IntelligenceIntelligence



Knowledge Extraction Applications

• Higher dimension graph 
analysis to determine sensor 

NETWORK DETECTION DATA FUSION TOPOLOGICAL DATA 
ANALYSIS

•Graph analysis for identifying 
interesting sub-networks 

2D/3D Fused  
Imagery

y
net coverage

g
within large noisy graphs*

• Bayesian networks for fusing 
imagery and ladar for betterimagery and ladar for better 
on board tracking *A. Tahbaz Salehi and A. Jadbabaie, Distributed coverage 

verification in sensor networks without location information

KEY ALGORITHMAPPLICATION
Edge Betweenness CentralityN t k d t ti MATRIX MULT: A + * B

KEY KERNEL
• Edge Betweenness Centrality
• Bayesian belief propagation
• Minimal Spanning Trees
• Single source shortest path

• Network detection
• Feature aided 2D/3D fusion
• Dimensionality reduction
• Finding cycles on complexes

MATRIX MULT: A +.  B
MATRIX MULT: A +.* B
MATRIX MULT: X +.* A +.* XT

D min.+ A
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Many knowledge extraction algorithms are based on graph algorithmsMany knowledge extraction algorithms are based on graph algorithms

*email network from http://www.mailchimp.com/blog/tag/social-networks/



Fundamental Observation
-Graph-Sparse Matrix Duality-

Many graph algorithms can be expressed as sparse array computationsMany graph algorithms can be expressed as sparse array computations

Graph preliminaries
A graph G = (V E) where

Adjacency matrix representation:
• Non-zeros entry A(i j) where there exists an edgeA graph G = (V,E) where 

• V =  set of vertices
• E = set of edges

• Non-zeros entry A(i,j) where there exists an edge 
between vertices i and j

1 2

4 7 5

AT (AT)2AT
3 6

Graph G: 

AT x (AT)2xATx
Example operation:
• Vertices reachable from vertex v in N or less steps 

can be computed by taking A to the Nth power and
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can be computed by taking A to the Nth power and 
multiplying by a vector representing v



ALGORITHM PERFORMANCE

The Graph Processing 
Performance Gap

KERNEL PERFORMANCE ALGORITHM PERFORMANCEKERNEL PERFORMANCE

* Desired performance

103 efficiency 
degradation

PERFORMANCE GAP

degradation

• Current technologies do not provide 
performance or power efficiency for 

• Gap arises due to sparse and irregular
graph data y

knowledge extraction applications

• Emerging application trends require 
closing the performance gap 

g p

• Mapping can be computed ahead of 
algorithm deployment
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Efficient data mapping will help close gapEfficient data mapping will help close gap
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SMaRT
Sparse Mapping and Routing Toolbox

HARDWARE ABSTRACTION MAPPING ALGORITHMHARDWARE ABSTRACTION MAPPING ALGORITHM

Detailed, topology-
true hardware model

Fine-grained

Stochastic search for 
mapping and routing

Support for irregularFine-grained 
dependency analysis

Support for irregular 
data distributions
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11 13 12 14
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4 6 A map for an array is an A map for an array is an 

P2

P3

P4

P5
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PROGRAM ANALYSIS OUTPUT MAPS
1 2 3 5

assignment of blocks of 
data to processing nodes
assignment of blocks of 
data to processing nodes

P5



The Mapping Optimization Problem
GivenGiven

PROGRAMPROGRAM 
ANALYSIS

The image cannot be displayed.  
Your computer may not have 
enough memory to open the 
image, or the image may have  
been corrupted. Restart your 
computer, and then open the 
file again. If the red x still  
appears, you may have to 
delete the image and then  
insert it again.

The image cannot be displayed. Your  
computer may not have enough 
memory to open the image, or the  
image may have been corrupted. 
Restart your computer, and then open  
the file again. If the red x still appears,  
you may have to delete the image and  
then insert it again.ALGORITHM CODE , HARDWARE MODEL,PARSE TREE,

FindFind Such that: a performance objective is optimizedSuch that: a performance objective is optimized

S l bj ti
The image cannot be displayed. Your computer may  
not have enough memory to open the image, or the  
image may have been corrupted. Restart your  
computer, and then open the file again. If the red x  
still appears, you may have to delete the image and  
then insert it again.

Sample objectives,
• Execution latency or FLOPS
• Power (maximize operations/Watt)
• Efficiency, etcThe image cannot be displayed. Your  

computer may not have enough memory to 
open the image, or the image may have been  
corrupted. Restart your computer, and then  
open the file again. If the red x still appears,  
you may have to delete the image and then  
insert it again.SET OF MAPS, 
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Evaluation of the objective function requires performance predictionEvaluation of the objective function requires performance prediction



Mapping Optimization Challenges

Mapping is NP-complete
Network Coding ≤P Mapping

with Muriel Médard, MIT EECS
K-Clique ≤P Mapping
with Ben Miller, LL Gr 102

The search space of maps is extremely large:
Size of the mapping search space:

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart  
your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

number of processing nodesnumber of processing nodes
number of blocks

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

number of 
arrays in The image cannot be displayed.  

Your computer may not have 
enough memory to open the 
image, or the image may have  
been corrupted. Restart your 
computer, and then open the 
file again. If the red x still  
appears, you may have to 
delete the image and then  
insert it again.

number of 
blocks in array

The image  
cannot be 
displayed. 
Your 
computer 
may not have 
enough 
memory to 
open the 
image, or the  
image may  
have been 
corrupted

The objective function  is a simulation: values are discrete and 
Presumably non-convex 

A global search technique (such as a genetic algorithm) is well suited to mappingA global search technique (such as a genetic algorithm) is well suited to mapping
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A global search technique (such as a genetic algorithm) is well-suited to mappingA global search technique (such as a genetic algorithm) is well-suited to mapping
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Genetic Algorithm Concepts

15 16 17 18

11 13 12 14

9 10

7 8

Neo-darwinian evolution

7 8

4 6

1 2 3 5

Neo-darwinian evolution
•Population adaptation to an environment
•Through biased  selection based upon fitness of organism
•through genetic inheritance, random recombination and variation

Evolution is a search-based optimization process
•organism is a candidate solution to the environment
•fitness of organism expresses performance on objective
•adaptation is a search process that exploits and explores
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adaptation is a search process  that exploits and explores
• the search proceeds in parallel via the population



Genetic Algorithm for Map Optimization
Mapping Optimization Algorithm

GENETIC ALGORITHM

genes

…

P1

P2

Child 1

Child 2

Performance = 
Operations or Execution Latency Before

Recombination

Operations or Execution Latency 

Mapping space: arbitrary maps with fixed 
minimum block size

Variation

Before

After   
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Routing space: all-pairs all-paths
Variation



Dependency Graph

Dependency graph (DG)

DG is input to simulator  and expresses
where the data is mapped
how the data is routed between processors

DG is input to simulator  and expresses
where the data is mapped
how the data is routed between processors
what computations execute on each processor 

Topological sort of DG indicates what operations can proceed in parallel
DG is complete specification of computation on the studied architecture 

what computations execute on each processor 
Topological sort of DG indicates what operations can proceed in parallel
DG is complete specification of computation on the studied architecture 
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Dependency graph is tightly coupled with performanceDependency graph is tightly coupled with performance
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Analysis of Dependency Graph Characteristics

Performance is strongly related to DGPerformance is strongly related to DG

Best map

al
an

ce

Knowledge of parallelization
suggests a knee in the curve 

at certain degree of 

P di t d f

B
a g

complexity

Predicted performance

Ways to Define Balance
•Balance of CPU operations on nodes
•Balance of memory operations on nodes
•Average degree of concurrency
•Distribution of degree of concurrency
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A multi-objective genetic algorithm can co-optimize map performance and balanceA multi-objective genetic algorithm can co-optimize map performance and balance



Co-optimization: Pareto Dominance

Better: A > B
Map A performs faster
imbalance of A is lower

, ( ) dominated
non-dominated

“A dominates B”
A’s map and balance
are both better than B’s an

ce

Non Dominated
A’s map is better but 
B’s balance is better

Non-dominated frontim
ba

la

A

B

A
A3

Or B’s map is better but
A’s balance is better Map performance

A1A2

No solution is better on
both map and balance Comparison of each population member

Complexity O(mN^2)
Using comparison info to sort the fronts 
C l it O(N^2)Co optimization front also known
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Complexity O(N^2)
N=population size, m = number of objectives

Co-optimization front also known
as estimated pareto front



Experimental Setup

Scrambled 
Powerlaw

Scrambled 
Powerlaw

Algorithm Architecture
Network Latency 50e-9 secondsPowerlaw

X

Powerlaw Network Latency 50e 9 seconds

Network Bandwidth 5e9 bytes/sec

Memory Latency 50e-9 seconds

Memory Bandwidth 12e9 bytes/sec

CPU Rate 5e9 ops/sec

4x4x4 Torus TopologyHybrid Inner-Outer Product

MMappers
Baseline Multi-Objective Genetic Algorithm

Parameters:
P l ti 100

Random Sample

Anti-Diagonal

Population: 100
Generations: 30

Selection: 1/5 Pop.

Objectives:
Performance
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Anti-Diagonal 
Block Cyclic

Performance
Memory BalanceXO/Mutation Rate Operation Balance Varied Grids



Optimization Algorithm 
Comparison

3 41x3.41x 
better

MIT Lincoln Laboratory
HPEC-09- 19

U.M. O’Reilly 10/1/2009

Baseline ADBC mapping is outperformed by Multi-Objective Genetic AlgorithmBaseline ADBC mapping is outperformed by Multi-Objective Genetic Algorithm



Co-optimization (MOGA) Results

---- Mean Individual
---- Best Individual

Best solution is rightmost on performance (x-
axis)

Over the run, the non-dominated front

Mean memory imbalance decreases 
over time under co-optimization 
objectives (while performance 
improves)

migrates toward solutions with better memory 
balance and performance

Non-dominated front never becomes singular 

Complexity of best map fluctuates 
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indicating co-optimization is beneficial



Hardware Model Parametric Study

Network bandwidth parameters:
• Bandwidth*[10-1 100 101] 
• Hardware model affects the 
characteristics of the objective function

Network bandwidth parameters:
• Bandwidth*[10-1 100 101] 
• Hardware model affects the 
characteristics of the objective functioncharacteristics of the objective functioncharacteristics of the objective function

Hardware Model FLOPS Improvement

10-1 Network Model 34.1%

100 Network Model 26.4%
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101 Network Model 13.0%



Future Work

• Co-optimization objective should reflect 
relation between algorithm and structure 
of architecture

– Knowledge-based analysis: Consider metrics 
of parallelism of program or graphof parallelism of program or graph

– Statistical Analysis: Regress relationship 
between properties and performance from a 

l f th hit tsample of maps on the architecture
• Power co-optimization (in conflict with 

FLOPS) via the multi-objective pareto-FLOPS) via the multi objective, pareto
based Genetic Algorithm
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Summary

• Graph algorithms expressed in linear 
algebra expose a map optimization 
problemproblem

– Map optimization can be improved by co-
optimizing the performance and algorithm 

l it ith lti bj ti GAcomplexity with a multi-objective GA 
• Better maps close the performance gap of 

graph algorithmsg p g
• Improved performance of graph 

algorithms addresses challenges of rapid 
knowledge extractionknowledge extraction 

• Rapid knowledge extraction enables 
effective decision support
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pp



END
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