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e Data Intensive cloud
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2 Persistent Survelllance:

InsideDefense.com
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‘Project Thunderstorm’ set for FY-09

Detects PENTAGON SEEKS NEW TECHNOLOGIES TO ANALYZE,
INTERPRET ISR DATA

|m ag es The Defense Department's push to improve intelligence, surveillance and reconnaissance capabilities
in Iraq and Afghanistan is forcing Pentagon officials to grapple with the problem of processing the vast
amount of data collected by military sensors.

Raw Dafg

Global Haw Global Haw l Global Ha l Global Haw ' DoD missions must exploit
* High resolution sensors
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%ﬁ %ﬁ et < s * Integrated multi-modal data
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®* Short reaction times
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&S Bluegrass Dataset (detection/tracking)

e GMTI Wide-Area EO

Vehicle round
Truth Cues

* Terabytes of data; multiple classification levels; multiple teams
* Enormous computation to test new detection and tracking algorithms
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S Persistent Surveillance Data Rates

Raw data rate (12
bpp, packed)

* Persistent Surveillance requires watching large areas to be most
effective

* Surveilling large areas produces enormous data streams
* Must use distributed storage and exploitation
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Cloud Computing Concepts

Data Intensive Computing Utility Computing
* Compute architecture for large * Compute services for
scale data analysis outsourcing IT
— Billions of records/day, — Concurrent, independent users
trillions of stored records, operating across millions of
petabytes of storage records and terabytes of data
o Google File System 2003 o IT as a Service
o Google MapReduce 2004 o Infrastructure as a Service (laaS)
o Google BigTable 2006 o Platform as a Service (PaaS)
e Design Parameters o Software as a Service (SaaS)
—  Performance and scale * Design Parameters
— Optimized for ingest, query and — Isolation of user data and
analysis computation
— Co-mingled data — Portability of data with applications
— Relaxed data model — Hosting traditional applications
Simplified programming — Lower cost of ownership
o Communlty ‘YAHOO’ Capacity on demand
e Communit rce
(8) Google v Goggle

amazon [y Windows Azure 7'°-%

‘cloudera S webservioes: Tricity
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Advantages of Data Intensive Cloud:
Disk Bandwidth

Traditional: Cloud:
Data from central store to compute nodes Data replicated on nodes, computation
sent to nodes

Scheduler Scheduler

e Cloud computing moves computation to data
— Good for applications where time is dominated by reading from disk

* Replaces expensive shared memory hardware and proprietary
database software with cheap clusters and open source

— Scalable to hundreds of nodes
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* |ntroduction

e Distributed file systems

e Distributed database

* Integration with e Distributed execution
Supercomputing System

* Preliminary Results

* Summary
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Cloud Software: Hybrid Software Stacks

* Cloud implementations can be Applications
developed from a large variety Application Framework
of software components Services Job Control
- Many paCkages provide Cloud Services

overlapping functionality

MapReduce

HBase App Services

* Effective migration of DoD to a
cloud architecture will require
mapping core functions to the
cloud software stack

— Most likely a hybrid stack with
many component packages

Cloud Storage App Servers

Relational DB

* Distributed file systems

* MIT-LL has developed a — File-based: Sector
dynamic cloud deployment — Block-based: Hadoop DFS
architecture on its computing * Distributed database: HBase
Infrastructure e Compute environment: Hadoop
— Examining performance trades MapReduce

across software components
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P2P File system (e.g., Sector)

Client

Security Server

* Low-cost, file-based, “read-only”, replicating, distributed file system
* Manager maintains metadata of distributed file system
®* Security Server maintains permissions of file system

* Good for mid sized files (Megabytes)
— Holds data files from sensors
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Parallel File System (e.g., Hadoop DFS)

Metadata

Datanodes

N N e e e e e

* Low-cost, block-based, “read-only”, replicating, distributed file system
* Namenode maintains metadata of distributed file system
e Good for very large files (Gigabyte)

— Tar balls of lots of small files (e.g., html)
— Distributed databases (e.g. HBase)
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Namenode
Metadata N =

Datanodes

i e

e Database tablet components spread over distributed block-based file
system

* Optimized for insertions and queries

* Stores metadata harvested from sensor data (e.g., keywords, locations,
file handle, ...)
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2 Distributed Execution
e.g., Hadoop MapReduce, Sphere

Client

Metadata

Datanodes

i e

* Each Map instance executes locally on a block of the specified files

* Each Reduce instance collects and combines results from Map instances
* No communication between Map instances

* All intermediate results are passed through Hadoop DFS

* Used to process ingested data (metadata extraction, etc.)
MIT Lincoln Laboratory <=
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. Active folders register intent to

. Active folders write data to

. Manager launches Sphere

Hadoop Namenode/
Sector Manager/
Sphere JobMaster

LLGrid Cluster

Cloud HPC- 14
AIR 22-Sep-2009

. MapReduce-coded ingesters

. Client submits queries on Hbase

Sequence of Actions

write data to Sector. Manager
replies with Sector worker
addresses to which data should
be written.

Sector workers.

MapReduce-coded metadata
ingester onto Sector data files.

insert metadata into Hadoop
HBase database.

metadata entries.
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Scheduler _ Scheduler

* Compare accessing data
— Central parallel file system (500 MB/s effective bandwidth)
— Local RAID file system (100 MB/s effective bandwidth)

* |n dataintensive case, each data file is stored on local disk in its
entirety

* Only considering disk access time
* Assume no network bottlenecks
* Assume simple file system accesses
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& E/O Photo Processing App Model

10 3

S

Total Disk Access Time (8)

-
=
1

Central File Access
Local File Access

1m‘ 10* 10’

* Two stages Nodes

— Determine features in each photo

— Correlate features between current photo and every other photo
* Photo size: 4.0 MB each
* Feature results file size: 4.0 MB each

e Total photos: 30,000
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= Persistent Surveillance Tracking

App Model

10°}
z
g
F 10}
z
o
1
5 |
Central File Access
Local File Access
10“ 1 1 1 1 1 1 L 1 I | 1 1 1 1 1 1 1 1
10 10* 10’

Nodes
* Each processor tracks region of ground in series of images
* Results are saved in distributed file system
* Image size: 16 MB
* Track results: 100 kB
* Number of images: 12,000
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* |ntroduction

e Cloud scheduling
environment

* Dynamic Distributed

* Preliminary Results E)[;TI\‘Z;SiO”al Data Model

* Summary
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3 Cloud Scheduling

* Two layers of Cloud scheduling
— Scheduling the entire Cloud environment onto compute
nodes
Cloud environment on single node as single process
Cloud environment on single node as multiple processes
Cloud environment on multiple nodes (static node list)

Cloud environment instantiated through scheduler, including
Torque/PBS/Maui, SGE, LSF (dynamic node list)

— Scheduling MapReduce jobs onto nodes in Cloud
environment

First come, first served
Priority scheduling

* No scheduling for non-MapReduce clients
* No scheduling of parallel jobs
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e Parallel computing APIs * Cloud computing API
assume all compute nodes assumes a distributed
are aware of each other computing programming
(e.g., MPI, PGAS, ..)) model (computed nodes

only know about manager)

However, cloud infrastructure assumes parallel computing
hardware (e.g., Hadoop DFS allows for direct comm
between nodes for file block replication)

Challenge: how to get best of both worlds?
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D4M: Parallel Computing on the Cloud

Client

— . Manager Security Server
SSL .EE e FEE 2
o i i

* D4M launches traditional parallel jobs (e.g., pMatlab) onto Cloud environment

* Each process of parallel job launched to process one or more documents in
DFS

* Launches jobs through scheduler like LSF, PBS/Maui, SGE

* Enables more tightly-coupled analytics
MIT Lincoln Laboratory <=
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* |ntroduction
e Cloud Supercomputing

* [ntegration with
Supercomputing System

* D4M progress

* Summary
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Service Nodes

Shared
network
storage

istributed

LSF-HPC . |
System |

resource
manager/

Distributed Cloud File Systems on
TX-2500 Cluster

+ (] +.
Laddia

schedul

Rocks Mgmt, 411,
Web Server,

Ganalia i

To LLAN =—

4132 DAL
PowerEdge 2850
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432+5 Nodes

864+10 CPUs

3.4 TB RAM

0.78 PB of Disk

28 Racks

MIT-LL Hadoop

Number of

nodes used 2L Y
File system 598918 452.77TB
size

Replication 3 5
factor
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D4M on LLGrid

(/
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Client

g Manager Securlty Server

P L

.....

i e

* Demonstrated D4M on Hadoop DFS
* Demonstrated D4M on Sector DFS
* D4M on HBase (in progress)
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Summary

* Persistent Surveillance applications will over-burden our
current computing architectures

— Very high data rates
— Highly parallel, disk-intensive analytics
* Good candidate for Data Intensive Cloud Computing

* Components of Data Intensive Cloud Computing
— File- and block-based distributed file systems
— Distributed databases
— Distributed execution

* Lincoln has Cloud experimentation infrastructure
— Created >400 TB DFS

— Developing D4M to launch traditional parallel jobs on Cloud
environment
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Backups
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& Outline

* Introduction
— Persistent surveillance requirements
— Data Intensive cloud computing
* Cloud Supercomputing
— Cloud stack
— Distributed file systems
— Computational paradigms
— Distributed database-like hash stores
* |ntegration with supercomputing system
— Scheduling cloud environment
— Dynamic Distributed Dimensional Data Model (D4M)
* Preliminary results

* Summary
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What is LLGrid?

""'
%

/~  Service Nodes Compute Nodes Cluster Switch

Network
Storage

Resource Manager

Configuration
Server

\ To Lincoln LAN

® LLGridis a~300 user ~1700 processor system |
* World’s only desktop interactive supercomputer

— Dramatically easier to use than any other supercomputer

— Highest fraction of staff using (20%) supercomputing of any
organization on the planet

* Foundation of Lincoln and MIT Campus joint vision for
“Engaging Supercomputing”
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= Decision Support
Diverse Computing Requirements

Algorithm prototyping
* Front end

* Back end

* Exploitation

Processor prototyping

* Embedded
e Cloud/ Grid
* Graph

Stage

Algorithms

Data

Kernels

Architecture

Efficiency
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Elements of Data Intensive Computing

* Distributed File System
— Hadoop HDFS: Block-based data storage
— Sector FS: File-based data storage

* Distributed Execution
— Hadoop MapReduce: Independently parallel compute model
— Sphere: MapReduce for Sector FS
— D4M: Dynamic Distributed Dimensional Data Model

* Lightly-Structured Data Store
— Hadoop HBase: Distributed (hashed) data tables
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