Exascale Computing: Embedded Style

TeraFlop Embedded

PetaFlop Departmental

ExaFlop Data Center

Peter M. Kogge McCourtney Chair in Computer Science & Engineering Univ. of Notre Dame IBM Fellow (retired) May 5, 2009

Thesis

• Last 30 years:

- "Gigascale" computing first in a single vector processor
- "Terascale" computing first via several thousand microprocessors
- "Petascale" computing first via several hundred thousand cores

• Commercial technology: to date

- Always shrunk prior "XXX" scale to smaller form factor
- Shrink, with speedup, enabled next "XXX" scale

Space/Embedded computing has lagged far behind

- Environment forced implementation constraints
- Power budget limited both clock rate & parallelism

"Exascale" now on horizon

- But beginning to suffer similar constraints as space
- > And technologies to tackle exa challenges very relevant

Especially Energy/Power

- The DARPA Exascale Technology Study
- The 3 Strawmen Designs
- A Deep Dive into Operand Access

Disclaimers

This presentation reflects my interpretation of the final report of the Exascale working group only, and not necessarily of the universities, corporations, or other institutions to which the members are affiliated.

Furthermore, the material in this document does not reflect the official views, ideas, opinions and/or findings of DARPA, the Department of Defense, or of the United States government.

ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems

Peter Kogge, Editor & Study Lead Keren Bergman Shekhar Borkar Dan Campbell William Carlson William Dally **Monty Denneau** Paul Franzon William Harrod Kerry Hill Jon Hiller Sherman Karp Stephen Keckler Dean Klein **Robert Lucas** Mark Richards Al Scarpelli Steven Scott Allan Snavely **Thomas Sterling** R. Stanley Williams Katherine Yelick

September 28, 2008

This work was sponsored by DARPA IPTO in the ExaScale Computing Study with Dr. William Harrod as Program Manager, AFRL contract number FA8650-07-C-7724. This report is published in the interest of scientific and technical information exchange and its publication does not constitute the Government's approval or disapproval of its ideas or findings

NOTICE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

Note: Separate Exa Studies on Resiliency & Software

The Exascale Study Group

NAME	Affiliation	NAME	Affiliation	
Keren Bergman	Columbia	Steve Keckler	UT-Austin	
Shekhar Borkar	Intel	Dean Klein	Micron	
Dan Campbell	GTRI	Peter Kogge	Notre Dame	
Bill Carlson	IDA	Bob Lucas	USC/ISI	
Bill Dally	Stanford	Mark Richards	Georgia Tech	
Monty Denneau	IBM	Al Scarpeli	AFRL	
Paul Franzon	NCSU	Steve Scott	Cray	
Bill Harrod	DARPA	Allan Snavely	SDSC	
Kerry Hill	AFRL	Thomas Sterling	LSU	
Jon Hiller	STA	Stan Williams	HP	
Sherman Karp	STA	Kathy Yelick	UC-Berkeley	

11 Academic 6 Non-Academic 5 "Government" + Special Domain Experts

10+ Study Meetings over 2nd half 2007

The DARPA Exascale Technology Study

- Exascale = 1,000X <u>capability</u> of Petascale
- Exascale != Exaflops but
 - Exascale at the data center size => Exaflops
 - Exascale at the "rack" size => Petaflops for departmental systems
 - Exascale embedded => Teraflops in a cube
- Teraflops to Petaflops took 14+ years
 - 1st Petaflops workshop: 1994
 - Thru NSF studies, HTMT, HPCS …
 - To give us to Peta now
- Study Questions:
 - > Can we ride silicon to Exa By 2015?
 - What will such systems look like?
 - Can we get 1 EF in 20 MW & 500 racks?
 - Where are the Challenges?

The Study's Approach

Baseline today's:

- Commodity Technology
- Architectures
- Performance (Linpack)

Articulate scaling of potential application classes

Extrapolate roadmaps for

- "Mainstream" technologies
- Possible offshoots of mainstream technologies
- Alternative and emerging technologies
- Use technology roadmaps to extrapolate use in "strawman" designs
- Analyze results & Id "Challenges"

Context: Focus on Energy Not Power

CMOS Energy 101

One clock cycle dissipates C*V²

ITRS Projections

10

Energy Efficiency

- × Historical
- Green 500 Top 10
- UHPC Cabinent Energy Efficiency Goal
- Exa Simplistically Scaled Projection
- ---- Top System Trend Line

- Top 10
- UHPC Cabinent Goal
- UHPC Module Energy Efficiency Goal
- Exa Fully Scaled Projection
- CMOS Technology

The 3 Study Strawmen

Architectures Considered

Evolutionary Strawmen

"Heavyweight" Strawman based on commodity-derived microprocessors

"Lightweight" Strawman based on custom microprocessors

Aggressive Strawman

"Clean Sheet of Paper" CMOS Silicon

A Modern HPC System

A "Light Weight" Node Alternative

System Architecture:

- Multiple Identical Boards/Rack
- Each board holds multiple Compute Cards
- "Nothing Else"

- 2 Nodes per "Compute Card." Each node:
- A low power compute chip
- Some memory chips
- "Nothing Else"

- 2 simple dual issue cores
- Each with dual FPUs
- Memory controller
- Large eDRAM L3
- 3D message interface
- Collective interface
- All at subGHz clock

"Packaging the Blue Gene/L supercomputer," IBM J. R&D, March/May 2005
 "Blue Gene/L compute chip: Synthesis, timing, and physical design," IBM J. R&D, March/May 2005

Possible System Power Models: Interconnect Driven

- Simplistic: A highly optimistic model
 - Max power per die grows as per ITRS
 - Power for memory grows only linearly with # of chips
 - Power per memory chip remains constant
 - Power for routers and common logic remains constant
 - Regardless of obvious need to increase bandwidth
 - True if energy for bit moved/accessed <u>decreases</u> as fast as "flops per second" increase
- Fully Scaled: A pessimistic model
 - Same as Simplistic, except memory & router power grow with peak flops per chip
 - True if energy for bit moved/accessed remains constant
- Real world: somewhere in between

1 EFlop/s "Clean Sheet of Paper" Strawman

Sizing done by "balancing" power budgets with achievable capabilities

HPEC 9/22/09

A Single Node (No Router)

1 Eflops Aggressive Strawman Data Center Power Distribution

- 12 nodes per group
- 32 groups per rack
- 583 racks
- 1 EFlops/3.6 PB
- 166 million cores
- 67 MWatts

Data Center Performance Projections

Power Efficiency

Energy Efficiency

- × Historical
- Green 500 Top 10
- UHPC Cabinent Energy Efficiency Goal
- Exa Simplistically Scaled Projection
- ---- Top System Trend Line

- Top 10
- UHPC Cabinent Goal
- UHPC Module Energy Efficiency Goal
- Exa Fully Scaled Projection
- CMOS Technology

Data Center Total Concurrency

HPEC 9/22/09

Data Center Core Parallelism

Key Take-Aways

Developing Exascale systems really tough

> In any time frame, for any of the 3 classes

Evolutionary Progression is at best 2020ish

With limited memory

• 4 key challenge areas

Power:

- Concurrency:
- > Memory Capacity
- Resiliency
- Requires coordinated, cross-disciplinary efforts

Embedded Exa: A Deep Dive into Interconnect to Deliver Operands

Tapers

 Bandwidth Taper: How effective bandwidth of operands being sent to a functional unit varies with location of the operands in memory hierarchy.

Units: Gbytes/sec, bytes/clock, <u>operands per flop time</u>

 Energy Taper: How energy cost of transporting operands to a functional unit varies with location of the operands in the memory hierarchy.

Units: Gbytes/Joule, <u>operands per Joule</u>

- Ideal tapers: "Flat"-doesn't matter where operands are.
- Real tapers: huge dropoffs

An Exa Single Node for Embedded

The Access Path: Interconnect-Driven

Sample Path – Off Module Access

- 1. Check local L1 (miss)
- 2. Go thru TLB to remote L3 (miss)
- 3. Across chip to correct port (thru routing table RAM)
- 4. Off-chip to router chip
- 5. 3 times thru router and out
- 6. Across microprocessor chip to correct DRAM I/F
- 7. Off-chip to get to correct DRAM chip
- 8. Cross DRAM chip to correct array block
- 9. Access DRAM Array
- **10. Return data to correct I/R**
- 11. Off-cchip to return data to microprocessor
- **12. Across chip to Routre Table**
- **13. Across microprocessor to correct I/O port**
- 14. Off-chip to correct router chip
- 15. 3 times thru router and out
- **16. Across microprocessor to correct core**
- 17. Save in L2, L1 as required
- NOT**RE DIVIS Register File**

30

Taper Data from Exascale Report

Memory Level	Capacity	Bandwidth	BW Taper	Power	Energy Taper
	GB	GB/s	Operands/clock	mW/flop	Operands/pJ
Register File	1KB	35,960	4	8.2	0.56
L1	64 KB	8,992	0.25	5.5	0.068
L2	256KB	4,496	0.125	3.5	0.054
L3	97MB	2,288	0.0625	3.8	0.025
Local DRAM	16GB	712	0.02	10.5	0.0029
Network DRAM	3.8PB	216	0.006	11.5	0.00008

Bandwidth Tapers

1,000X Decrease Across the System!!

Energy Analysis: Possible Storage Components

33

Summary Transport Options

Option	Value	units	Comments		
Off-chip drive					
Core to L1	2.1	mm	Scaled to 2015 dimensions		
Cross chip	21.3	шш	Unchanged from Exa study		
High swing wire	0.107	pJ per bit per mm			
Low swing wire	0.018	pJ per bit per mm			
One word chip-chip - pad	144	pJ per word	Traditional pad		
One word chip-chip - TSV	0.8	p.I per word	11 fJ/bit		
One word chip-chip - capacitive	144	pJ per word			
One word chip-chip - inductive 10.1 pJ per word					
On-chip Optical					
E/O modulator	7.2	pJ per word	Modulate 1 word onto laser beam		
O/E Receiver	7.2	pJ per word	Receive one word back to digital		
On-chip Broadband Router	0.5	mW	per router		
Power per laser	10.0	mW	per wavelength		
Power for 250 lasers	2.5	W			
Off chip Optical					
Laser, per word	96	pJ per word	Uisng 0.3mW per channel @10% activity and 2.0		
Modulator, per word	0.72	p.I per word			
RX + TIA, per word	360	pJ per word	Again at 10% activity		
Temperature Control	?	pJ per word			

1 Operand/word = 72 bits

Energy Tapers vs Goals

	Reachable		Energy (pJ)		Opernads
Path	Capacity(MB)	Total	Transport	Access	% Transport	per pJ
Register File	9.77E-04	0.7	0.0	0.7	0.0%	1.436
L1 Hit	3.13E-02	3.9	0.0	3.9	0.0%	0.260
L1 Miss, Local L2 Hit	2.50E-01	30.6	13.3	17.3	43.4%	0.033
L1 Miss, L3 Hit	3.04E+02	158.3	141.0	17.3	89.1%	0.006
L1,L2/L3 Miss On-Module Access	6.55E+04	292.1	255.0	37.1	87.3%	0.003
L1,L2/L3 Miss Off-Module Access	2.52E+07	6620.8	6607.2	13.7	99.8%	0.000

Reachable Memory vs Energy

What Does This Tell Us?

- There's a lot more energy sinks than you think
 And we have to take <u>all of them</u> into consideration
- Cost of Interconnect Dominates
- Must design for on-board or stacked DRAM, with DRAM blocks CLOSE

take into account physical placement

- Reach vs energy per access looks "linear"
- For 80GF/W, cannot afford ANY memory references
- We NEED to consider the entire access path:
 - Alternative memory technologies reduce access cost
 - Alternative packaging costs reduce bit movement cost
 - Alternative transport protocols reduce # bits moved
 - Alternative execution models reduce # of movements

