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e Last 30 years:
» “Gigascale” computing first in a single vector processor
» “Terascale” computing first via several thousand microprocessors
» “Petascale” computing first via several hundred thousand cores
« Commercial technology: to date
» Always shrunk prior “XXX” scale to smaller form factor
» Shrink, with speedup, enabled next “XXX” scale
 Space/Embedded computing has lagged far behind
» Environment forced implementation constraints
» Power budget limited both clock rate & parallelism
e “Exascale” now on horizon

» But beginning to suffer similar constraints as space
» And technologies to tackle exa challenges very relevant

S UNIVERSITY OF Especially Energy/Power

=) NOTRE DAME
¥ HPEC 9/22/09 2




* The DARPA Exascale Technology Study
 The 3 Strawmen Designs
A Deep Dive into Operand Access
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Disclaimers

This presentation reflects my
interpretation of the final report of the "
Exascale working group only, and not | &
necessarily of the universities, ‘
corporations, or other institutions to
which the members are affiliated.

Furthermore, the material in this
document does not reflect the official
views, ideas, opinions and/or findings |
of DARPA, the Department of

Defense, or of the United States
government.

Note: Separate Exa Studies on Resiliency & Software
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http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf
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Paul Franzon NCSU Steve Scott Cray
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Kerry Hill AFRL Thomas Sterling LSU
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The DARPA Exascale Technology Study

e Exascale =1,000X of Petascale
« Exascale !'= Exaflops but

» Exascale at the data center size => Exaflops

» Exascale at the “rack” size => Petaflops for
departmental systems

» Exascale embedded => Teraflops in a cube
 Teraflops to Petaflops took 14+ years

»> 15t Petaflops workshop: 1994
» Thru NSF studies, HTMT, HPCS ...
» To give us to Peta now
o Study Questions:
» Can we ride silicon to Exa By 20157

» What will such systems look like?
« Canwe get 1l EFin 20 MW & 500 racks?

» Where are the Challenges?
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The Study’s Approach

 Baseline today'’s:
» Commodity Technology
» Architectures
» Performance (Linpack)

e Articulate scaling of potential application classes

e Extrapolate roadmaps for
» “Mainstream” technologies
» Possible offshoots of mainstream technologies
» Alternative and emerging technologies

e Use technology roadmaps to extrapolate use in
“strawman” designs

 Analyze results & Id “Challenges”
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Context:
Focus on Energy
Not Power
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CMOS Energy 101
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ITRS Projections
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Energy Efficiency
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The 3 Study Strawmen
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Architectures Considered

e Evolutionary Strawmen

»“Heavyweight” Strawman based on
commodity-derived microprocessors

» “Lightweight” Strawman based on custom
MmIicroprocessors

« Aggressive Strawman
»" Clean Sheet of Paper” CMOS Silicon
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A Modern HPC System

Silicon Area Distribution
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A “Light Weight” Node Alternative

2 Nodes per “Compute Card.” Each node:
* A low power compute chip

R AT » Some memory chips

vl = waad . « “Nothing Else”

isi@m {-myimem

« 2 simple dual issue cores
» Each with dual FPUs

* Memory controller

e Large eDRAM L3

a1 * 3D message interface

| ,'?; » Collective interface

System Architecture:

e Multiple Identical Boards/Rack

« Each board holds multiple Compute Cards
* “Nothing Else”

“Packaging the Blue Gene/L supercomputer,” IBM J. R&D, March/May 2005 * All at subGHz clock
“Blue Gene/L compute chip: Synthesis, timing, and physical design,” IBM J. R&D, March/May 2005
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Possible System Power Models:
Interconnect Driven

o Simplistic: A highly optimistic model
» Max power per die grows as per ITRS

» Power for memory grows only linearly with # of chips
 Power per memory chip remains constant

» Power for routers and common logic remains constant
* Regardless of obvious need to increase bandwidth

» True If energy for bit moved/accessed decreases as fast
as “flops per second” increase
o Fully Scaled: A pessimistic model

» Same as Simplistic, except memory & router power grow
with peak flops per chip

» True If energy for bit moved/accessed remains constant
 Real world: somewhere in between
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1 EFlop/s “Clean Sheet of Paper” Strawman

Sizing done by “balancing” power budgets with achievable capabilities

* 4 FPUs+RegFiles/Core (=6 GF @1.5GHz) |nterconnect for intra and extra Cabinet Links
«1 Chip =742 Cores (=4.5TF/s)
« 213MB of L1I&D; 93MB of L2
* 1 Node =1 Proc Chip + 16 DRAMs (16GB)
1 Group =12 Nodes + 12 Routers (=54TF/s)
* 1 Rack =32 Groups (=1.7 PF/s)
» 384 nodes / rack
» 3.6EB of Disk Storage included
» 1 System = 583 Racks (=1 EF/s)
« 166 MILLION cores
* 680 MILLION FPUs
» 3.6PB = 0.0036 bytes/flops

« 68 MW w’aggressive assumptions

12 ROUTER

INTERFACES DRAMO

----------------------------------------

16 DRAM INTERFACES

Largely due to Bill Dally, Stanford \\
J=| UNIVERSITY OF 1Group
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A Single Node (No Router)

Leakage 21%
28%

Reg File
1%

Off-chip
13%

Cache Access
On-chip 20%
DRAM Access
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Characteristics:

e 742 Cores; 4 FPUs/core
« 16 GB DRAM

e 290 Watts

«1.08 TF Peak @ 1.5GHz
« ~3000 Flops per cycle
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1 Eflops Aggressive Strawman

Data Center Power Distribution

Disk

FPU 14% Processor
Leakage 16% Reg File 13%
26% DRAM 28%
3%
L2/L3 Network
Memory 16% 0% Router
29% 34%
Interconnect
29% L1 DRAM
39% 3%

(a) Overall System Power (b) Memory Power (¢) Interconnect Power

« 12 nodes per group

« 32 groups per rack

» 583 racks

« 1 EFlops/3.6 PB

e 166 million cores
B OTRE BAME s 67 Mvatts
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Data Center Performance Projections
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Power Efficiency
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Energy Efficiency
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Data Center Total Concurrency
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Data Center Core Parallelism
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Key Take-Aways

 Developing Exascale systems really tough
» In any time frame, for any of the 3 classes
 Evolutionary Progression is at best 2020ish
» With limited memory
e 4 key challenge areas
» Power:
» Concurrency:
» Memory Capacity
» Resiliency

 Requires coordinated, cross-disciplinary efforts
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Embedded EXxa:
A Deep Dive Into
Interconnect
to Deliver Operands
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« Bandwidth Taper: How effective bandwidth of operands
being sent to a functional unit varies with location of the
operands in memory hierarchy.

» Units: Gbytes/sec, bytes/clock, operands per flop time

« Energy Taper: How energy cost of transporting operands
to a functional unit varies with location of the operands in
the memory hierarchy.

» Units: Gbytes/Joule, operands per Joule

« ldeal tapers: “Flat’—doesn’t matter where operands are.

* Real tapers: huge dropoffs
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An Exa Single Node for Embedded

(a) Quilt Packaging

(b) Thru via chip stack

FPU

Leakage
28%

Reg File
11%

Off-chip
13%

‘ Cache Access
On-chip 20%
6% DRAM Access

1%
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Interconnect for intra and extra Cabinet Links

12 ROUTER
INTERFACES

DRAMO

16 DRAM INTERFACES
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The Access Path: Interconnect-Driven

id >~ More
: 4_“ Routers

ROUTER

“ =N
, |

Meimoly

MICROPROCESSOR]
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Sample Path — Off Module Access

1. Check local L1 (miss)
2. Go thru TLB to remote L3 (miss)
3. Across chip to correct port (thru routing table RAM)
4. Off-chip to router chip
5. 3times thru router and out
6. Across microprocessor chip to correct DRAM I/F
7. Off-chip to get to correct DRAM chip
8. Cross DRAM chip to correct array block
9. Access DRAM Array
10. Return data to correct I/R
11. Off-cchip to return data to microprocessor
12. Across chip to Routre Table
13. Across microprocessor to correct I/O port
14. Off-chip to correct router chip
15. 3 times thru router and out
16. Across microprocessor to correct core
/. Savein L2, L1 as required

= UNIVERSITY OF
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Taper Data from Exascale Report

Memory Level | Capacity | Bandwidth BW Taper Fower | Energy Taper
=B Y E e Crperands/clock | mW /Hop | Operands /pd
Hegister File 1KBE 35,0960 4 5.2 (.56
[.1 e B 8,902 0.25 5.5 0065
[.2 26KE 1,406 0,125 1.5 0054
[.3 9TME 2288 0.0625 1.8 0.025
Local DEARM 16GE 712 002 10.5 00029
Metwork DEAM [ 18PB 216 006 11.5 DLO0C0E

UNIVERSITY OF
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Bandwidth Tapers
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Energy Analysis: Possible Storage
Components

Cacti 5.3

Operands/pJ

Extrapolatia

v

0.001 4 . .
2004 2006 2008

2010 2012 2014 1 2016 2018 2020 2022 2024

RF: LOP; 4P; 1x128W RF: HP; 4P; 1x128W

—eo—32KB RAM: HP; 1P, 1x4KW
- -5 —-32KB RAM: LOP; 1P, 1x4KW
— —& —-32KB Cache: LOP; 1P, DM; 4W Block
——A—-1M RAM: LP-DRAM, 1P, 8 Bank
[ RF from Exa Study
A DRAM from Exa Study

— ¢ 32KB Cache: LOP; 1P, DM; 1W Block

- =@ - -32KB RAM: LP-DRAM; 1P, 1x4KW

— 44— 1M RAM: LOP, 1P, 1 Bank

----A---- 1M RAM: Comm-DRAM, 1P, 1 Bank
® 32KB SRAM Exa Study
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Summary Transport Options

Option | Value | unts | Comments
Off-chip drive
Core to L1 2.1 mm Sealed to 2015 dimensions
Cruss chip 21.3 [TTHT] Unehanged rom Exa stwdy
High swing wire 0.107 | pJ per bit per mm
Low swing wirc 0.01%2 [ pJ por bit per mm
Ome word chip-chip - pad 144 pd per word Traditional pad
Cme word chip-chip - TSV (= p.d per waord 11 £1/hit
COme word chip-chip - capacitive | 144 pd per word
One word chip-chip - mductive | 10.1 pd per word
Un-chip Optieal
E/O modulator 7. pd per word Modulate 1 word onto laser beam
0O/E Receiver 7.2 pd per word Receive one word back to digital
Omn-chip Broadband Ronter 0.5 mW per router
Power per laser 10.0 mwW per wavelengrh
Power for 250 lasers 2.5 W
Off chip Optieal
Laser, per ward 06 pd per word Uisng 0.3mW per channel @10% activity and 2
Madnlator, per word (.72 nd per word
RX + TIA, per word 360 pd per word Apgain at 10% activity
Temperatare Centrol ? pd per word

1 Operand/word =72 blts

UNIVERSITY OF
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Energy Tapers vs Goals

Reachable Energy (pJ Opernads
Path Capacity(MB)Y Total |Transporf] Access | % Transport per pJ
Register File 9.77E-04 0.7 0.0 0.7 0.0% 1.436
L1 Hit 3.13E-02 3.9 0.0 3.9 0.0% 0.260
L1 Miss, Local L2 Hit 2.50E-01 30.6 13.3 17.3 43.4% 0.033
L1 Miss, L3 Hit 3.04E+02 158.3 141.0 173, 89.1% 0.006
L1,L2/L3 Miss On-Module Access 6.55E+04 292.1 255.0 /371 \ 87.3% 0.003
L1,L2/L.3 Miss Off-Module Access 2.52E+07 6620.8 66072 | | 137 ) 99.8% 0.000
N
10.000
1.000 \\
] M | » » | ]
2 \
g 0100 . * - * * * *
o
1)
o
% \
- I
o 0.010
OD- \'\
0.001 \\\
0.000 \
Register File L1 Hit L1 Miss, Local L2 L1 Miss, L3 Hit  L1,L2/L3 Miss On- L1L2/L3 Miss Off-
Hit Module Access hModule Access
—®— Taper —¢— Rack Goal —#— System Goal —&— Module Goal ‘
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What Does This Tell Us?

« There's alot more energy sinks than you think
» And we have to take all of them into consideration

e Cost of Interconnect Dominates

 Must design for on-board or stacked DRAM, with
DRAM blocks CLOSE

» take into account physical placement
 Reach vs energy per access looks “linear”
 For 80GF/W, cannot afford ANY memory references

« We NEED to consider the entire access path:
» Alternative memory technologies — reduce access cost
» Alternative packaging costs — reduce bit movement cost
» Alternative transport protocols — reduce # bits moved
» Alternative execution models — reduce # of movements
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