

Very High Level Languages (VHLL) for No Pain Scalable Computing on
High Performance Systems

Bracy H. Elton, Siddharth Samsi, Harrison Ben Smith, Laura Humphrey, Stanley Ahalt, Alan Chalker

Ohio Supercomputer Center, {elton, samsi, bsmith, humphrey, ahalt, alanc}@osc.edu

Niraj Srivastava, Roope Astala, Interactive Supercomputing Inc.

{nsrivastava, rastala}@interactivesupercomputing.com

Introduction
1

While Moore’s Law continues to drive the density of

integrated circuits, heat and geometry issues are making it

impractical to create faster and faster processors. Instead,

more and higher performance systems are being built using

multi-core processors or accelerators like Graphics

Processor Units (GPUs), Field Programmable Gate Arrays

(FPGAs), often packaged into high-performance clusters

that amplify computing power while avoiding single-

processor constraints. As domain experts require even

higher capability and capacity to keep up with data growth

and the latest applications, they have little choice but to

employ these parallel computing platforms. However,

most current methodologies employ explicit parallel

techniques such as MPI or PGAS paradigms that require a

big initial investment in application development before a

domain expert is able to test scalability of the application.

In contrast, “productivity” is an “attribute of the entire

process of computing that delivers ultimate value to the

end user mission” [1]. Studies have shown large gains in

productivity through the use of high level languages [2,3].

The purpose of this paper is to provide a study in

scalability of a VHLL, namely Star-P®, on the MJM

system at the Army Research Lab Department of Defense

Supercomputing Resource Center (ARL DSRC). The

results will focus on the use of Star-P software platform

allowing transparent use of DSRC high performance

computing resources from familiar desktop environment

while providing scalable performance.

Star-P
Star-P is an interactive parallel computing platform from

Interactive Supercomputing, Inc. (ISC). It leverages

existing desktop simulation tools for simple, user-friendly

parallel computing to a spectrum of computing

architectures: SMP servers, multi-core servers, distributed

memory clusters systems and cluster of GPUs. With Star-

P, DoD users can continue to use the development and

simulation tools they are already familiar with to solve

larger, more complex problems that cannot be done on a

desktop computer. Existing MATLAB® or Python scripts

can be reused to run larger problems faster by

decomposing problems or tasks to run in parallel with

minimal modification. Star-P implements distributed

memory parallelization of arrays and a client/server model

that allows desktop users to take advantage of HPC

resources.

Acknowledgement: This publication was made possible through support provided by DoD HPCMP PET activities

through Mississippi State University under contract No. GS04T01BFC0060. The opinions expressed herein are those

of the author(s) and do not necessarily reflect the views of the DoD, Mississippi State University, the Ohio

Supercomputer Center, or Interactive Supercomputing, Inc.

MJM Overview
MJM has 1100 two-processor socket dual-core compute

nodes, each with 8 GB of memory, and has 8 two-

processor socket dual-core login nodes, each with 16 GB

of memory. The system utilizes a high-speed 4X DDR

Infiniband interconnect and a global shared file system.

Processors operate at a frequency of 3.0 GHz, resulting in

a peak floating-point rate of 12.0 Gflop/s per core. In

total, the 4400 compute cores deliver 52.8 Tflop/s.

Using Star-P on the ARL DSRC MJM System
Star-P is intended for interactive, parallel computing from

MATLAB or Python.

Interactive: The session can start from user’s local

Windows/Linux client or from login nodes of MJM.

Interactive mode assumes that the cluster is ready and

available for computations or that resources are made

available via a workload manager (WLM), such as

Platform Computing’s LSF, Sun Grid Engine (SGE) or

Torque, among others. The Star-P client initiates Star-P

server process on the cluster. The Star-P server, in turn,

submits a request to the WLM for compute resources for

parallel work. Once the WLM allocates the resources, the

Star-P client manages execution of parallel work on these

resources.

Batch: When using shared computing resources such as

those available at the DSRCs and managed by WLM, the

queue for resources can be long, especially for large

allocations. The interactive mode of operation is thus not

practical, and the established way to run simulations is to

use the batch system for both the Star-P client and server.

In a batch system, users are able to use standard LSF

scripts to request the desired resources first and then run

Star-P with a given M-file or a Python script on allocated

resources.

Reservation: Users are also able to set up advanced

reservations to run their analyses. This is particularly

useful for users intending to run analyses interactively,

say, on data as it is being collected in a lab or in the field,

without having to wait for compute resources.

Scalability Results
We present three results on the MJM system. The first

comprises results of HPL benchmark written in MATLAB

script with Star-P modification for data parallel

computation.
idx= 200000

x = rand(idx,idx*p);

ppchangedist(x,3);

y = rand(idx*p,1);

tic; z=x\y; toc;

This simple MATLAB script solves a (random) dense

linear system in double precision (64-bit) arithmetic of a

200K by 200K random matrix by distributing the matrix

across the cluster, as per the following:

• Adding the *p construct makes variables parallel.

• Related variables, via propagation, become parallel.

• Functions on parallel variables are transparently

“overloaded” and themselves become parallel.

Figure 1 shows the scalability of HPL as function of data

size and number of cores. Simple code above is able to

consistently get around 50% of the peak. We did notice

some variability in the runs, which seems to be related to

performance variation between the nodes. For the 512 core

run, we observed 10% performance variation in the

memory subsystem (see Table 1).

Table 1: STREAMS result from a 512-core benchmark

showing minimum and maximum values. (N=Node#)

Function Rate(MB/s) Min @(N 29) Max @(N 160)

Scale 4589.2 4185.7 4627.1

Figure 1: Scalability of parallel operations on distributed

data.

The next example shows the scalability of task parallel

algorithms using a simple Gaussian filter that is applied to

many instances of a 1025x1025 matrix. Figure 2 shows

scaling as a function of cores and number of tasks. The

result shows near-perfect scaling with tasks and cores.

The final example is radio frequency (RF) tomographic

imaging in the Air Force Research Laboratory Radar

Signal Processing Technology Branch [4]. The VHHL and

scalability results provide technical direction toward a

shortened development cycle time for a RF tomography

imaging experiments. The shortened development cycle

results in increased productivity, reducing the time to

develop a deployable system.

Figure 2: Time to execute tasks as a function of the number of

tasks on various numbers of cores.

Figure 3: Application scalability for fixed problem size

Summary

As the results show, VHLL can hide the complexities of

parallel programming, while providing high performance

to the user. Furthermore, users are also shielded from the

complexities of interacting with various high performance

systems and their environments by providing a consistent

client environment.

References

 [1] Thomas Sterling, “Productivity Metrics and Models for

High Performance Computing,” International Journal of

High Performance Computing Applications, Vol. 18, No. 4,

pp. 433-440, 2004.

[2] J. Kepner and N. Travinin, "Parallel Matlab: The Next

Generation," Proc. 7th High Performance Embedded

Computing Workshop (HPEC 2003), MIT Lincoln Lab.,

2003.

[3] A. Edelman et al., "Interactive Supercomputing’s Star-P

Platform: Parallel MATLAB and MPI Homework

Classroom Study on High Level Language Productivity,"

Proc. 10th High Performance Embedded Computing

Workshop (HPEC 2006), MIT Lincoln Lab., 2006.

[4] M. C. Wicks, B. Himed, J. L. E. Bracken, H. Bascom, and J.

Clancey, “Ultra narrow band adaptive tomographic radar,”

1st IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing, IEEE, Dec.

2005, pp. 36–39.

