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Introduction
1
 

While Moore’s Law continues to drive the density of 

integrated circuits, heat and geometry issues are making it 

impractical to create faster and faster processors. Instead, 

more and higher performance systems are being built using 

multi-core processors or accelerators like Graphics 

Processor Units (GPUs), Field Programmable Gate Arrays 

(FPGAs), often packaged into high-performance clusters 

that amplify computing power while avoiding single-

processor constraints. As domain experts require even 

higher capability and capacity to keep up with data growth 

and the latest applications, they have little choice but to 

employ these parallel computing platforms. However, 

most current methodologies employ explicit parallel 

techniques such as MPI or PGAS paradigms that require a 

big initial investment in application development before a 

domain expert is able to test scalability of the application. 

In contrast, “productivity” is an “attribute of the entire 

process of computing that delivers ultimate value to the 

end user mission” [1]. Studies have shown large gains in 

productivity through the use of high level languages [2,3]. 

The purpose of this paper is to provide a study in 

scalability of a VHLL, namely Star-P®, on the MJM 

system at the Army Research Lab Department of Defense 

Supercomputing Resource Center (ARL DSRC). The 

results will focus on the use of Star-P software platform 

allowing transparent use of DSRC high performance 

computing resources from familiar desktop environment 

while providing scalable performance. 

Star-P 
Star-P is an interactive parallel computing platform from 

Interactive Supercomputing, Inc. (ISC).  It leverages 

existing desktop simulation tools for simple, user-friendly 

parallel computing to a spectrum of computing 

architectures:  SMP servers, multi-core servers, distributed 

memory clusters systems and cluster of GPUs.  With Star-

P, DoD users can continue to use the development and 

simulation tools they are already familiar with to solve 

larger, more complex problems that cannot be done on a 

desktop computer.  Existing MATLAB® or Python scripts 

can be reused to run larger problems faster by 

decomposing problems or tasks to run in parallel with 

minimal modification.  Star-P implements distributed 

memory parallelization of arrays and a client/server model 

that allows desktop users to take advantage of HPC 

resources. 
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MJM Overview 
MJM has 1100 two-processor socket dual-core compute 

nodes, each with 8 GB of memory, and has 8 two-

processor socket dual-core login nodes, each with 16 GB 

of memory.  The system utilizes a high-speed 4X DDR 

Infiniband interconnect and a global shared file system. 

Processors operate at a frequency of 3.0 GHz, resulting in 

a peak floating-point rate of 12.0 Gflop/s per core.  In 

total, the 4400 compute cores deliver 52.8 Tflop/s. 

Using Star-P on the ARL DSRC MJM System 
Star-P is intended for interactive, parallel computing from 

MATLAB or Python. 

Interactive:  The session can start from user’s local 

Windows/Linux client or from login nodes of MJM.  

Interactive mode assumes that the cluster is ready and 

available for computations or that resources are made 

available via a workload manager (WLM), such as 

Platform Computing’s LSF, Sun Grid Engine (SGE) or 

Torque, among others.  The Star-P client initiates Star-P 

server process on the cluster.  The Star-P server, in turn, 

submits a request to the WLM for compute resources for 

parallel work.  Once the WLM allocates the resources, the 

Star-P client manages execution of parallel work on these 

resources. 

Batch:  When using shared computing resources such as 

those available at the DSRCs and managed by WLM, the 

queue for resources can be long, especially for large 

allocations.  The interactive mode of operation is thus not 

practical, and the established way to run simulations is to 

use the batch system for both the Star-P client and server.  

In a batch system, users are able to use standard LSF 

scripts to request the desired resources first and then run 

Star-P with a given M-file or a Python script on allocated 

resources. 

Reservation:  Users are also able to set up advanced 

reservations to run their analyses.  This is particularly 

useful for users intending to run analyses interactively, 

say, on data as it is being collected in a lab or in the field, 

without having to wait for compute resources. 

Scalability Results 
We present three results on the MJM system.  The first 

comprises results of HPL benchmark written in MATLAB 

script with Star-P modification for data parallel 

computation.  
idx= 200000     

x = rand(idx,idx*p); 



 

ppchangedist(x,3); 

y = rand(idx*p,1); 

tic; z=x\y; toc; 

 

This simple MATLAB script solves a (random) dense 

linear system in double precision (64-bit) arithmetic of a 

200K by 200K random matrix by distributing the matrix 

across the cluster, as per the following: 

• Adding the *p construct makes variables parallel. 

•  Related variables, via propagation, become parallel. 

• Functions on parallel variables are transparently 

“overloaded” and themselves become parallel. 

Figure 1 shows the scalability of HPL as function of data 

size and number of cores. Simple code above is able to 

consistently get around 50% of the peak. We did notice 

some variability in the runs, which seems to be related to 

performance variation between the nodes. For the 512 core 

run, we observed 10% performance variation in the 

memory subsystem (see Table 1). 

Table 1: STREAMS result from a 512-core benchmark 

showing minimum and maximum values. (N=Node#) 

Function Rate(MB/s) Min @(N 29) Max @(N 160) 

Scale 4589.2 4185.7 4627.1 

 
Figure 1: Scalability of parallel operations on distributed 

data. 

The next example shows the scalability of task parallel 

algorithms using a simple Gaussian filter that is applied to 

many instances of a 1025x1025 matrix. Figure 2 shows 

scaling as a function of cores and number of tasks.  The 

result shows near-perfect scaling with tasks and cores. 

 

The final example is radio frequency (RF) tomographic 

imaging in the Air Force Research Laboratory Radar 

Signal Processing Technology Branch [4].  The VHHL and 

scalability results provide technical direction toward a 

shortened development cycle time for a RF tomography 

imaging experiments.  The shortened development cycle 

results in increased productivity, reducing the time to 

develop a deployable system. 

 

 
Figure 2: Time to execute tasks as a function of the number of 

tasks on various numbers of cores. 

 
Figure 3: Application scalability for fixed problem size 

Summary 

As the results show, VHLL can hide the complexities of 

parallel programming, while providing high performance 

to the user.  Furthermore, users are also shielded from the 

complexities of interacting with various high performance 

systems and their environments by providing a consistent 

client environment. 
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