Dependable Multiprocessor (DM) Support for Diverse and Heterogeneous Processing

Précis Presentation

Dr. Matthew Clark Honeywell Defense & Space, Clearwater, FL matthew.clark@honeywell.com (727) 539 - 3439

September 22, 2009

DM: A COTS-Based High-Performance Payload Cluster Computing Platform

What is DM?

- A high-performance, COTS-based, fault tolerant cluster onboard processing system that can operate in a natural space radiation environment
- High throughput density (>300 MOPS/watt), scalable & software based
- High system availability >0.995
- High probability of timely and correct delivery of data >0.995
- Technology independent system software that manages cluster of high performance COTS processing elements
- Technology independent system software that enhances radiation upset tolerance

Why is DM important?

- Flying high-performance COTS in space is a long-held NASA and DoD objective
- · DM is bringing this objective closer to reality
- Enables heretofore unrealizable levels of onboard data and autonomy processing
- Enables faster, more efficient application development
- Enables users to port applications directly from laboratory to space environment
- DM is a significant paradigm shift
 - provides ~ 10X 100X throughput density available with current RHBP & software-based RHBD processing at much lower cost
 - software-based technology allows space to keep pace with COTS

Status?

TRL6 Testbed

Emulated Spacecraft Computer

 NASA NMP ST8 has invested >\$12M in the development and demonstration of DM technology through TRL6

Data Processor

DM

System Controlle

DM

Ethernet Switch

Data Processo

DM

Discrete Control Network

Data Processo

DM

Data Processo

(Mass Data

DM

- Demonstrated DM predictive Availability, "Computational Consistency," and Performance models
- Demonstrated ability to meet NASA Level 1 requirements/goals
- Successfully completed system-level radiation testing
- DM project has further developed, refined and demonstrated the process for migrating COTS high performance computing to space
- DM technology has been demonstrated on wide variety of platforms
- DM technology is applicable to wide range of missions
- Seeking a ride to space to achieve TRL7

DM Technology is Ready for a Flight Experiment

Honeywell.com

DM TRL6 Testbed System

- TRL6 Testbed Configuration
 - System Controller (SC)
 - Honeywell Ganymede (PPC603e)
 - VxWorks 5.5
 - 4x Data Processing Nodes (DP)
 - XES XPedite 6031 (PPC7447a @ 800MHz with AltiVec) ruggedized, conductively-cooled COTS SBCs
 - Wind River PNE-LE CGL 1.4 (Kernel 2.6.14)
 - 1 DP emulates rad-hard "mass memory" device
 - 100BaseT Ethernet Network
 - Spacecraft Communication Interface over RS422 on SC
 - Dependable Multiprocessor
 Middleware (DMM)

- Critical Design Review
 - ruggedized, conductively-cooled, COTS boards can fly in space

3 DM is the path to space; DMM & COTS processors ready for flight experiment

The Next Steps in Diversity and Heterogeneity

- To enhance DM's diversity and heterogeneity, efforts are being made in the following areas:
 - Hardware
 - Additional COTS (SOI) processing architectures with path to space for improved throughput density
 - Additional high-speed interconnects with path to space for improved bandwidth, reliability, fault tolerance
 - Software
 - Additional POSIX compliant operating systems to expand supported dataprocessing platforms
 - Newer versions of VxWorks (6.x)
 - Wider variants of Linux (e.g., linux-rt)
 - Non-monolithic kernels (e.g., QNX)
 - Add support for Open MPI to expand the types of user applications that can be transparently migrated to DM environment
 - Upgrade current HAM software foundation to a Service Availability[™] Forum (SAF) compliant suite

Summary & Conclusion

- DM is as an architecture and methodology that enables COTS-based, high performance, scalable, multi-computer systems, and accommodates future technology upgrades (HW & SW)
- DM can rapidly incorporate new techniques/technologies to overcome performance gaps with regards to throughput, power, mass and cost
- DM technology is platform-agnostic middleware
- DM is a significant paradigm shift
 - for applications that only need to be radiation tolerant, DM can provide 10x-100x throughput density (MOPS/watt) over current software programmable RHBP & RHBD processing capability with reduced cost, risk, and schedule
 - software-based technology allows space to keep pace with COTS
- DM technology enables more onboard processing, faster onboard processing, faster frame processing, lower downlink bandwidth, and data/information direct to the war fighter
- DM was developed by NASA as flight project
 - extensive ground testing
 - predictive models
 - ready to fly

5 DM technology can take COTS to space; ready to support a flight experiment