
Parallel Processing in ROSA II
Sara Siegal and Glenn Schrader

MIT Lincoln Laboratory
ssiegal@ll.mit.edu, gschrad@ll.mit.edu

Introduction1
ROSA II (Realtime Open Systems Architecture II) is a
component architecture designed for implementing real-
time sensor systems. The sensors that use ROSA II include
radar and optical sensors. The underlying concepts of
ROSA II are generally applicable to both types of sensor
systems. The architecture allows a given system to be either
distributed across a set of processors or run on a single
processor, depending on the needs of that system. While
radar signal processing is often parallelized, for our
application we needed ROSA II components and PVL to
coexist and communicate in the same system. Further, the
ROSA II framework is based on the Unix operating system,
while our signal processing is based on Mercury's MCOE
operating environment. No common communications
middleware existed for both these operating systems. Thus
we needed to combine PVL with our ROSA II application
and RTCL.

We will discuss the challenges faced while combining these
libraries, various aspects of system performance, and the
lessons learned during implementation.

ROSA II2Framework
The ROSA II framework is a common, open sensor
infrastructure that enables a wide variety of DoD future
capabilities. It allows a developer to "compose" a sensor by
selecting and adapting reusable components, both software
and hardware, and is designed to support a wide range of
device applications. It provides a common open framework
for sensor and device back end computing; a solid basis for
rapid prototyping as well as development based on modern,
open, component-based architecture. It is platform
independent, flexible, scalable, and compatible with net-
centric approaches.

ROSA II Component Architecture
All ROSA II components share a generic base class, “ROSA
II_Component”, which contains common interfaces
(such as the control Parameters subscriber, and status
message publisher), common methods (such as state
machine logic), component attributes (such as a
component’s name, process ID, and process state), and
environment attributes (such as a the host’s computer class,
host ID, processor type, OS name and version). Figure 1
shows a typical component diagram. Each component
implements the ROSA II state machine as shown in Figure
2.

This work is sponsored by the Department of the Air Force under Air
Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and not necessarily endorsed
by the United States Government.

Figure 1: ROSA II Component Diagram[1]

Figure 2: ROSA II Component State Transition Diagram[2]

RTCL
RTCL (Radar Thin Communications Layer) is a
communications middleware with publish/subscribe
semantics for use in radar applications. It is built on top of
other communications middlewares as shown in Figure 3
and provides a consistent communications abstraction to
software engineers while allowing them to use different
underlying middlewares as needed.

Figure 3: RTCL layered architecture

Hardware
We used a heterogeneous development system, comprised
of a 6U VME/RACE++ Mercury chassis containing a 6U
300 Mhz Sparc CPU host running Solaris 5.8, and four 6U
dual-port Mercury motherboards, each containing a dual
PPC G4 daughterboard.

The Challenge
The ROSA II framework is based on the Unix operating
system, while our signal processing is based on Mercury's
MCOE operating environment. Some middlewares
available for Unix platforms include RTI-DDS and shared
memory. The middleware available for MCOE is MPI. No
common communications middleware existed for both
these operating systems. Thus we needed to combine PVL
with our ROSA II application and RTCL.

PVL
PVL (Parallel Vector Library) is an object-oriented
software library for parallel signal processing implemented
in C++. It allows signal processing algorithms to be written
with high-level mathematical constructs that are
independent of the underlying parallel mapping. Programs
written using PVL can be ported to a wide range of parallel
computers without sacrificing performance. Furthermore,
the mapping concepts in PVL provide the infrastructure for
enabling new capabilities such as fault tolerance and self-
optimization.[3]

Solution
We implemented a new middleware adaptation layer,
McBridge, for the Mercury CEs (compute elements)
running MCOE on the Mercury motherboards. This allowed
us to use RTCL to communicate among the CEs. The
Solaris host was responsible for booting the CEs and
loading our application onto them. Each CE ran a copy of
the application in parallel (and independent of the other
CEs). The CEs used RTCL and McBridge to communicate
with the outside world, and Mercury conduits to
communicate with each other. We used PVL to distribute
the workload among the CEs.

The combination of these technologies (ROSA II
application, PVL, and RTCL using the McBridge
middleware), enabled us to develop a fully parallelized
system within the ROSA II framework.

References
 [1] P. Jurgensen, “ROSA II Generic Component Base Class”,

2008

[2] G. Schrader, H. Nguyen, M. Eskowisz, “ROSA II Airborne
Radar PDR”, 2007

[3] J. Kepner, J. Lebak, “Software Technologies for High-

Performance Parallel Signal Processing”, 2003

