
UAV Video Image Stabilization on the SRC MAP® Processor

William Turri, University of Dayton Research Institute (UDRI)
William.Turri@udri.udayton.edu

David Pointer, SRC Computers, LLC

dpointer@srccomputers.com

Introduction
Compensating for airframe motion in Unmanned Aerial
Vehicle (UAV) imagery is crucial to mission success.
Image stabilization is traditionally accomplished by
wireless video transmission to ground-based computers,
which process the image frames before presentation to the
UAV operator. However, usable wireless bandwidth is not
keeping pace with the amount of data produced by today’s
high-resolution image sensors, which is forcing designers
to move many image processing functions from the ground
to on-board the UAV. These functions, which could
include target tracking, feature extraction, temporal image
compression and others, require stabilized video input.

Our goal is to stabilize 11-megapixel grayscale video at a
sustained rate of three frames-per-second (fps). Meeting
this computational demand along with airframe size,
weight and power (SWaP) requirements is challenging.
Published results utilizing the SRC MAP Processor for
Synthetic Aperture Radar (SAR) image processing [1], the
Tactical Reconnaissance and Counter Concealment
Enabled Radar (TRACER) project [2] and airborne image
processing in general [3] indicates the SRC-7 MAP
Processor provides the performance required by typical
airborne image processing applications. In addition,
several fielded SRC-7 systems in small to mid-sized UAVs
show the MAP Processor delivers this compute capability
within each program’s SWaP specifications. For example,
a single CPU/MAP system requires 165 cubic inches of
space, weighs less than 6 pounds and consumes less than
100 watts of power.

UAV Video Image Stabilization
Video image stabilization (Figure 1) for each image frame
is computed by selecting “good” features in the previous
frame, locating (tracking) these features in the current
frame, estimating the tracked feature motion vectors
between frames, then removing the estimated motion for
each pixel in the current frame.

Frame
N-1

Feature
Select

Feature
Track

Estimate
Motion

Frame
N

Apply Stable
Frame

Figure 1: Video Image Stabilization Processing Flow

Appropriate algorithm selection for each of these
processing blocks depends upon the nature of the

undesired video motion due to airframe flight, random
airframe motion and ambient visual conditions. Which
algorithms are “best” for UAV video image stabilization is
currently the subject of much research. This
implementation is derived from one [4] of several papers
in this area.

Implementation
From the results presented in [4], this implementation uses
the Harris corner detector to select 5x5 pixel templates of
features from the previous image frame. Each 5x5 feature
template from the previous frame is located in the current
frame by utilizing the sum of absolute differences (SAD)
template matching technique. The affine transform model
provides reasonably accurate motion estimation results for
the majority of parameters in the UAV standard six-
degrees-of-freedom flight model [4], and so the iterative
least squares method is used on the feature motion vectors
to obtain estimates for the affine model’s scaling, rotation
and translation parameters. These affine model parameters
are used to remove the estimated motion from each pixel
in the current image frame.

These algorithms were initially implemented in Matlab for
a developmental proof-of-concept. This Matlab code was
then translated into ANSI C programs for the CPU and the
MAP Processor.

Application performance profiling results on the CPU
naturally lead to the system design shown in Figure 2.
Image frames are directly input to the MAP Processor
where features are selected and tracked between frames,
resulting in a set of image feature coordinates for two
frames. The current frame and these coordinates are input
to the CPU, where the final motion estimation and image
stabilization take place. The data transfer to the CPU is
overlapped with the MAP execution, and so does not add
to the overall processing time.

Camera MAP CPUFrames &
Coordinates

Image
Frames

Stable
Frames

Figure 2: Image Processing Flow

Results
In Table 1, the CPU is a 2.67 GHz quadcore Intel Nehalem
system with 12 GBytes of system memory running Fedora
Core 10 Linux. The MAP Processor is an SRC-7 Series H
MAP with two 150 MHz Altera EP2S180 FPGAs, 64
MBytes of On-Board Memory, and two 512 MByte banks

of Common Memory. The frames are 11 megapixel
(4008x2672) 8-bit grayscale images from an Illunis XMV
digital camera. 220 features are tracked between each pair
of video frames. The camera connects directly into a
Camera Link card on the MAP Processor’s GPIOX
interface. The CPU-only timing measurements assume the
use of a high-performance PCI-Express frame grabber card
capable of sustained data transfer between the camera and
CPU system memory at the full Camera Link data rate of
900 MBytes per second.

Algorithm CPU (s) MAP (s) Speedup CPU +
MAP (s)

Feature
Select

5.803 0.072 81x 0.072

Feature
Track

72.724 0.987 74x 0.987

Estimate
Motion

0.000045 0.000051 0.9x 0.000045

Apply 0.093 0.072 1.3x 0.093

Totals 78.527 1.130 70x 1.151

Table 1: Application Performance

The CPU alone stabilizes an 11 megapixel image frame
with 220 tracked features once every 78 seconds. Virtually
100% of that time is spent in executing the feature select
and tracking algorithms. The MAP Processor executes the
feature select algorithm 81 times faster and the feature
tracking algorithm 74 times faster than the CPU for the
same image frames and feature count. In other words, the
single MAP Processor does the work of over 70 Nehalem
CPUs, replacing several conventional servers. Working
together as shown in Figure 2, this heterogeneous system
achieves an image stabilization frame rate of nearly 1 fps.

Summary
Profile-driven partitioning of the application tasks across
the system CPU and the MAP processor achieves a
performance level of 70x. The MAP processor could
execute all four algorithms internally without a CPU, but
the MAP’s execution of the motion estimation and final
image stabilization algorithms are roughly the same as the
CPU’s execution time. Moving these functions from the
MAP to the CPU freed up MAP resources which were then
used to implement additional parallelism in the feature
tracking algorithm, which increased its performance on the
MAP from an initial 10x to its current 74x over the CPU.

Table 2 summarizes the MAP processor architectural
features that significantly contributed to the
implementation’s performance results. The GPIOX
interface enabled sustained delivery of image frames
directly into the MAP Processor at full Camera Link data
rates. The Common Memory acted as a frame buffer for
the incoming frame as well as holding the previous and
current frames locally for processing. Streaming allowed
concurrent processing within the MAP for a large
performance gain over the CPU’s serial processing. Lastly,
streaming DMA between the Common Memory and the

MAP FPGAs and between the MAP and the CPU system
memory enabled data to be transferred in parallel with
processing, and so the data transfer time did not add to the
MAP Processor’s execution time.

Work continues at UDRI to improve the current 0.9 fps
processing rate using the heterogeneous system to 3 fps.

Architectural
Feature Implementation Benefits

GPIOX Interface Direct full Camera Link video
input into the MAP processor.

Common
Memory Local frame buffer storage.

Streams

Stream data as it is computed in
one compute loop and consume it
in a subsequent compute loop,
enabling concurrent processing
without data pooling in memory.

Streaming DMAs

Stream the input data directly into
compute loops without needing to
store data in local memories and
similarly for computed output data.

Table 2: MAP Processor Benefits to Implementation

References
 [1] P. Buxa. et al., “Mapping of a 2D SAR Backprojection

Algorithm to an SRC Reconfigurable Computing MAP
Processor”, Proceedings of the High-Performance
Embedded Computing Workshop 2005 (HPEC’05), MIT
Lincoln Laboratories, Lexington, MA, September 20-22,
2005.

[2] J. Isenman, et al., “Signal/Data Processor Implementation
and Algorithms for Realtime Wide-Angle Ultra-Wideband
SAR Image Formation”, submitted to the High-Performance
Embedded Computing Workshop 2009 (HPEC’09), MIT
Lincoln Laboratories, Lexington, MA, September 22-24,
2009.

[3] SRC Computers’ MAP® Processors for Airborne
Intelligence, Reconnaissance, and Surveillance
Applications, MKT-043-00, SRC Computers LLC, Colorado
Springs, CO, January 6, 2009.

[4] D. Johansen, Video Stabilization and Target Localization
Using Feature Tracking With Small UAV Video, M.S.
Thesis, Department of Electrical and Computer Engineering,
Brigham Young University, December 2006.

