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Introduction 
Compensating for airframe motion in Unmanned Aerial 
Vehicle (UAV) imagery is crucial to mission success. 
Image stabilization is traditionally accomplished by 
wireless video transmission to ground-based computers, 
which process the image frames before presentation to the 
UAV operator. However, usable wireless bandwidth is not 
keeping pace with the amount of data produced by today’s 
high-resolution image sensors, which is forcing designers 
to move many image processing functions from the ground 
to on-board the UAV. These functions, which could 
include target tracking, feature extraction, temporal image 
compression and others, require stabilized video input. 

Our goal is to stabilize 11-megapixel grayscale video at a 
sustained rate of three frames-per-second (fps). Meeting 
this computational demand along with airframe size, 
weight and power (SWaP) requirements is challenging. 
Published results utilizing the SRC MAP Processor for 
Synthetic Aperture Radar (SAR) image processing [1], the 
Tactical Reconnaissance and Counter Concealment 
Enabled Radar (TRACER) project [2] and airborne image 
processing in general [3] indicates the SRC-7 MAP 
Processor provides the performance required by typical 
airborne image processing applications. In addition, 
several fielded SRC-7 systems in small to mid-sized UAVs 
show the MAP Processor delivers this compute capability 
within each program’s SWaP specifications. For example, 
a single CPU/MAP system requires 165 cubic inches of 
space, weighs less than 6 pounds and consumes less than 
100 watts of power. 

UAV Video Image Stabilization 
Video image stabilization (Figure 1) for each image frame 
is computed by selecting “good” features in the previous 
frame, locating (tracking) these features in the current 
frame, estimating the tracked feature motion vectors 
between frames, then removing the estimated motion for 
each pixel in the current frame. 

Frame
N-1

Feature
Select

Feature
Track

Estimate
Motion

Frame
N

Apply Stable
Frame

 

Figure 1: Video Image Stabilization Processing Flow 

Appropriate algorithm selection for each of these 
processing blocks depends upon the nature of the 

undesired video motion due to airframe flight, random 
airframe motion and ambient visual conditions. Which 
algorithms are “best” for UAV video image stabilization is 
currently the subject of much research. This 
implementation is derived from one [4] of several papers 
in this area. 

Implementation 
From the results presented in [4], this implementation uses 
the Harris corner detector to select 5x5 pixel templates of 
features from the previous image frame. Each 5x5 feature 
template from the previous frame is located in the current 
frame by utilizing the sum of absolute differences (SAD) 
template matching technique. The affine transform model 
provides reasonably accurate motion estimation results for 
the majority of parameters in the UAV standard six-
degrees-of-freedom flight model [4], and so the iterative 
least squares method is used on the feature motion vectors 
to obtain estimates for the affine model’s scaling, rotation 
and translation parameters. These affine model parameters 
are used to remove the estimated motion from each pixel 
in the current image frame.  

These algorithms were initially implemented in Matlab for 
a developmental proof-of-concept. This Matlab code was 
then translated into ANSI C programs for the CPU and the 
MAP Processor. 

Application performance profiling results on the CPU 
naturally lead to the system design shown in Figure 2. 
Image frames are directly input to the MAP Processor 
where features are selected and tracked between frames, 
resulting in a set of image feature coordinates for two 
frames. The current frame and these coordinates are input 
to the CPU, where the final motion estimation and image 
stabilization take place. The data transfer to the CPU is 
overlapped with the MAP execution, and so does not add 
to the overall processing time. 
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Figure 2: Image Processing Flow 

Results 
In Table 1, the CPU is a 2.67 GHz quadcore Intel Nehalem 
system with 12 GBytes of system memory running Fedora 
Core 10 Linux. The MAP Processor is an SRC-7 Series H 
MAP with two 150 MHz Altera EP2S180 FPGAs, 64 
MBytes of On-Board Memory, and two 512 MByte banks 



of Common Memory. The frames are 11 megapixel 
(4008x2672) 8-bit grayscale images from an Illunis XMV 
digital camera. 220 features are tracked between each pair 
of video frames. The camera connects directly into a 
Camera Link card on the MAP Processor’s GPIOX 
interface. The CPU-only timing measurements assume the 
use of a high-performance PCI-Express frame grabber card 
capable of sustained data transfer between the camera and 
CPU system memory at the full Camera Link data rate of 
900 MBytes per second. 

Algorithm CPU (s) MAP (s) Speedup CPU + 
MAP (s) 

Feature 
Select 

5.803 0.072 81x 0.072 

Feature 
Track 

72.724 0.987 74x 0.987 

Estimate 
Motion 

0.000045 0.000051 0.9x 0.000045 

Apply 0.093 0.072 1.3x 0.093 

Totals 78.527 1.130 70x 1.151 

Table 1: Application Performance 

The CPU alone stabilizes an 11 megapixel image frame 
with 220 tracked features once every 78 seconds. Virtually 
100% of that time is spent in executing the feature select 
and tracking algorithms. The MAP Processor executes the 
feature select algorithm 81 times faster and the feature 
tracking algorithm 74 times faster than the CPU for the 
same image frames and feature count. In other words, the 
single MAP Processor does the work of over 70 Nehalem 
CPUs, replacing several conventional servers. Working 
together as shown in Figure 2, this heterogeneous system 
achieves an image stabilization frame rate of nearly 1 fps. 

Summary 
Profile-driven partitioning of the application tasks across 
the system CPU and the MAP processor achieves a 
performance level of 70x. The MAP processor could 
execute all four algorithms internally without a CPU, but 
the MAP’s execution of the motion estimation and final 
image stabilization algorithms are roughly the same as the 
CPU’s execution time. Moving these functions from the 
MAP to the CPU freed up MAP resources which were then 
used to implement additional parallelism in the feature 
tracking algorithm, which increased its performance on the 
MAP from an initial 10x to its current 74x over the CPU. 

Table 2 summarizes the MAP processor architectural 
features that significantly contributed to the 
implementation’s performance results. The GPIOX 
interface enabled sustained delivery of image frames 
directly into the MAP Processor at full Camera Link data 
rates. The Common Memory acted as a frame buffer for 
the incoming frame as well as holding the previous and 
current frames locally for processing. Streaming allowed 
concurrent processing within the MAP for a large 
performance gain over the CPU’s serial processing. Lastly, 
streaming DMA between the Common Memory and the 

MAP FPGAs and between the MAP and the CPU system 
memory enabled data to be transferred in parallel with 
processing, and so the data transfer time did not add to the 
MAP Processor’s execution time. 

Work continues at UDRI to improve the current 0.9 fps 
processing rate using the heterogeneous system to 3 fps. 

 

Architectural 
Feature Implementation Benefits 

GPIOX Interface Direct full Camera Link video 
input into the MAP processor. 

Common 
Memory Local frame buffer storage. 

Streams 

Stream data as it is computed in 
one compute loop and consume it 
in a subsequent compute loop, 
enabling concurrent processing 
without data pooling in memory. 

Streaming DMAs  

Stream the input data directly into 
compute loops without needing to 
store data in local memories and 
similarly for computed output data. 

Table 2: MAP Processor Benefits to Implementation 
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