High-Speed Parallel Processing of
Protocol-Aware Signatures

Jordi Ros-Giralt, James Ezick, Peter Szilagyi, Richard Lethin

Reservoir Labs

632 Broadway, #803
New York, NY 10012
(212) 780-0527
giralt@reservoir.com

Unclassified, DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. This material is
based upon works supported by the Department of Energy under contract numbers DE-FG02-08ER85046. Any

opinions, findings and conclusions expressed in this material are those of Reservoir Labs, and do not necessarily
reflect the views of the Department of Energy.

Copyright © 2009 Reservoir Labs, Inc.

A L{\ HPEC 2009
rasenvoir fabs
%% \J A\ 22 September 2009

Problem Definition and Previous Work

Why: Intelligent signature matching and protocol parsing are key functions of intrusion
detection systems that need to keep up with line rates (100 Gbps)

— There exists a trade off between complexity of the signatures and processing speed.
— Trend: cyber attacks become smarter, so need to handle complex signatures.
— Trend: network trunks become faster, so need to handle high speed.

Problem: How to process large number of protocol signatures at high speed?
— Need to be able to process large number of signatures in parallel.
— Need to minimize processing overhead on core processors.

How: Use SAT tools, binary decision diagrams (BDD) and deterministic finite automatons (DFA)
— Use SALT™ (converts Boolean functions into simplified Conjunctive Normal Form).
— Compose OR signature, obtain its CNF form and calculate optimal BDD cuts.
— Offload the resulting BDDs onto hardware accelerated DFA engines.

Result: Capability to process large number of signatures at high speed onto hardware DFA
engines

— Currently building prototype on a heterogeneous 16-core processor/accelerator NPU (Cavium
Octeon Plus) and looking at running this on the Octeon Il and Tilera TILE64.

— Experimental results presented in our abstract and poster.

AN HPEC 2009
rasenvoir fabs
%/P\J \J \V 22 September 2009

How it Works Through a Low-Scale Example

Ghttpdlog signature expressed in salt:

r

;33 Ghttpdlog Salt

1o

$bitl expr =7

$bhit2 expr =7

$bit3 expr =7

$bit4 expr =7

$bith expr =7

$conjunctionl and ~%$bitl $bit2 =
$conjunction2 and $bitl ~$bit3
$hit4 =

$conjunction3 and $bitl $bit3 $bit5b
$disjunction or $conjunctionl
$conjunction2 $conjunction3 =

S eval S$disjunction + ; assert
return value true

#done

E;/\l_ TM 2-350

CNF:

Pl 2150

Optimal min-max
cut mapping on 3
DFA engines

(b2Nb4NbS)U(b2NBINb4)U(b2N B3N b4)U(b2NB3NLS)U(B2NbINDB3)
J(b2NbBINDS)U(b2Nb1)U(b2NbIN3)U(BINB4NbS)U(BINLINb4)U(bINBINbS

AP L

HPEC 2009
22 September 2009

Results and Preliminary Conclusions

Size of DFA specs (log scale of bytes)

clauses per signature _ _
variables per signature

e Average case analysis. Using a random signature generator and taking average cases:

— Emitting DFA specs for signatures from 6 to 20 variables and from 6 to 20 clauses per signature,
the average DFA size obtained is 410340 bytes.

— That yields 2.43 signatures per megabyte.
— On a DFA with 256MB of memory, we can fit in average about 600 signatures.
— Each signature can involve 100s of CPU cycles per connection offloaded from the core processor.

* Real examples. Examples using real signatures are shown in the poster.

AN HPEC 2009
rasenvoir fabs
%/P\J \J \V 22 September 2009

Relationship with Previous Work

Schear’s Approach:

A single signature only uses a small portion
of the protocol state machine.

By customizing the state machine to each
signature (removing those elements in the
state machine that are irrelevant to the
signature), each signature can run much
faster .

-

S1-specific
protocol
state
machine

S2-specific SN-specific
protocol : protocol
state SigN state

machine machine

Small number of signatures

\ /
Solutions in their own niches

Our Approach:

If N is large enough, then the union of
Schear's specialized state machines add
up to the complete protocol state
machine.

In this case, it pays off to implement one
single complete protocol state machine
and have all signatures leverage the same
machine

Complete
protocol
state
machine

S = Union
of all
signatures

Large number of signatures

HPEC 2009
22 September 2009

%t%:ri}' abs
\V ARV

	High-Speed Parallel Processing of Protocol-Aware Signatures
	Problem Definition and Previous Work
	How it Works Through a Low-Scale Example
	Results and Preliminary Conclusions
	Relationship with Previous Work

