High-Speed Parallel Processing of Protocol-Aware Signatures'

Jordi Ros-Giralt, James Ezick, Peter Szilagyi, Richard Lethin
Reservoir Labs, Inc.
{ giralt, ezick, szilagyi, lethin} @reservoir.com

Summary

Intrusion Detection and Prevention (IDP) systems serve an
important gate guard role in proactively preserving the
integrity of computer networks under cyber attacks. IDPs
are built around the concept of a signature: a boolean
function S(M) that returns true if the incoming network
message M is an attack and false otherwise. Thus, a main
task of an IDP is to resolve a set of signatures {S;}, each
covering a specific exploit or vulnerability of the system, as
fast as possible, to determine which traffic is malicious.

A key to the design of IDP systems is the idiomatic richness
in which an incoming message M can be expressed. For
instance, traditional IDP systems are based on simple
pattern-matching/protocol-agnostic signatures, S'(M"), that
treat the input message M' as an array of opaque bytes. Such
signatures are simple to implement and can run at very high
speed, but their coverage is limited and they suffer from a
high number of false negatives because attackers can evade
them by using polymorphic variances of the original attack
message. Instead, a protocol-aware IDP system is capable of
processing protocol-aware signatures. A protocol-aware
signature, SP(MP), differs from the traditional one, S'(M"), in
that its input MP is expressed in terms of the protocol header
fields of the incoming message. Such signatures are
considered more powerful than the traditional protocol-
agnostic ones [1] because, by being resilient to polymorphic
attacks, their coverage is much higher. (In some cases
providing zero false negatives.)

Efficient execution of signatures is key since IDP systems
frequently operate on network trunks handling large
amounts of traffic (up to 100 Gbps). The situation is further
exacerbated by the fact that real deployments need to
typically handle on the order of thousands of signatures.
While traditional IDP solutions based on pattern-matching
can be executed in parallel using hardware optimizations
such as embedded DFA engines, to the best of our
knowledge no equivalent solution has been produced for the
processing of protocol-aware signatures on a parallelized
hardware engine. For instance, [4] presents relevant results
on the acceleration of protocol-aware vulnerability-based
signatures based on the independent optimization of each
signature's protocol parser, but it leaves the problem of
single-pass parallel processing of all the signatures as open.
In this paper we present a method, based in part on
previously developed techniques for optimizing boolean
functions for processing by Satisfiability (SAT) solvers, that
exploits redundant computational elements across protocol-
aware signatures to efficiently process their logic.

Exploiting Signature Redundancies

In any protocol-aware signature, SP(MP), the number of

protocol header fields that its input MP can potentially
depend on is bounded. This is unlike the traditional pattern-
matching signatures, whose inputs are defined as functions
of any random sequence of bytes derived from the incoming
packets. Because of this bounded nature, one should expect
to find redundant computational elements across the
signatures. Furthermore, the number of redundancies
should increase with the number of signatures loaded into
the IDP system. Consider, for instance, the optimal
protocol-aware signatures for the Atphttpd and GhttpdLog
cyber attacks [1] shown in Figure 1. These two signatures

have bitl as a redundant computational element.
Optimal signature for Atphttpd attack:

f = bitl & bit2 & bit3 & bit4 & ((bit5 & bit6) | (!bit5 & bit7) | (bit8 & bit9))

bitl : strcmp(METHOD,"GET") == 0;
bit2 : URI[O] == "/";

bit3 : URI[1] ="/

bit4 : strstr(URI_sub[1], "/../") == 0;
bit5 : isnotdir(URI_sub[1]);

bit6 : stat(URI_sub[1],ptr) < 0;

bit7 : stat(URI_sub[1]+"index.html",ptr) < O;
bit8 : URI_sub[1] == 0;

bit9 : stat("index.html",ptr) < 0;

Redundancy
across signatures

Optimal signature for GhttpdLog attack:

f = (1bitl & bit10) | (bitl & !bit1l & bit12) || bitl & bitl1 & bit13)

bitl : strcmp(METHOD,"GET") == 0;
bit10 : strlen(METHOD) > 165;

bitll : strstr(URL,"/..")) == 0;

bitl2 : strlen(URI) > 170;

bitl3 : strlen(URI) + strlen(ClientAddr) > 166;

Figure 1: Protocol-aware signatures and their redundancies

The above property provides one key to the design of a
signature processing engine that can scale up with the
number of signatures. Our objective is to design a method
that exploits such types of redundancies while allowing for
the parallel processing of the signatures.

Parallelization Method

To mathematically exploit redundancies, we use the OR
operator to generate a new logical signature from the set of
base signatures handled by the IDP system. The OR
signature can be understood as a boolean function that
returns true if and only if one or more base signatures are
triggered. Since the OR signature simplifies away logical
redundancies across the base signatures, this provides a
natural way to implement a fast path, as shown in Figure 2.

fast path slow path

i [signature s1

i |5igna|uresz

Signature S1

Signature S2

)

Signature Sn

()

! | signature Sn

Figure 2: Fast and slow path
The fast path S, is defined as a signature equal to the union
of all the base signatures {Si} loaded in the system:

Su= UtoraniSi (1)

1This work was funded by the US Department of Energy, contract number DE-FG02-08ER85046.

If Sy resolves to false on a specific flow F, then no signature
is triggered and no further work needs to be done for F.
Otherwise, at least one signature is being triggered, in
which case the flow is passed on to the slow path which is
programmed to resolve each signature individually.

We have devised a method to obtain hardware
representations of protocol-aware fast path (OR) signatures
using Binary Decision Diagrams (BDDs) with the
computational elements (bit results) as the decision points.
To obtain the BDD representation of a signature, we use
Salt™ [2] (or Satisfiability Application Logic Translator),
our constraint logic language and optimizing translation
tool for SAT applications that converts Boolean functions
into simplified Conjunctive Normal Form (CNF) files. The
method we propose is based on the following three-step
procedure: (1) Use Salt to generate a simplified CNF
representation for each signature, (2) convert each CNF
expression into a BDD and (3) generate the fast path by
OR'ing all the BDDs.

Consider as an example the signatures in Figure 1. We start
by first composing a Salt representation of each signature;
by running the Salt translator we then obtain a simplified
CNF representation for each signature (Figure 3).

Ghttpdlog signature expressed in salt:

r “

CNF:

ii: Ghttpdlog Salt

sbitl expr =?

shit2 expr =?

sbit3 expr =?

sbit4 expr =?

shit5 expr =?

sconjunctionl and ~shitl $hit2 =
Sconjunction2 and $bitl ~$bit3
sbitd =

Sconjunction3 and $bitl $hit3 $bit5
sdisjunction or $conjunctionl
Sconjunction2 sconjunction3 =

s_ eval §disjunction + ; assert
return value true

#done

(h20b40bS)U(b20bIN b4)U(h20b3N b4)U(b20 B3N bS)U(B2NBINDF)
(b2NbINBS)U(B2NbI1)U(b2NbI N3)U(BTNb4NbS)U(BINb3 Nb4)U(BINBI NbS

Figure 3: Salt/CNF representations of the Ghttpdlog attack
Using a standard BDD software suite, from each CNF we
obtain a BDD graph describing the logic of each signature,
as shown in Figure 4. (In our illustrations we indicate a true
or false transition in the BDDs with a continuous or
discontinuous edge, respectively.)

Each BDD corresponds to a DFA implementation of each
signature. The final step involves the simplification of
nodes that appear multiple times in the fast path (OR) BDD,
since such nodes are a manifestation of redundancies across
signatures. In our example, node 1 appears twice in the fast
path BDD and therefore the second instance can be
eliminated (Figure 5). This simplification step effectively
eliminates bit/ as a redundant element in the original
signature pair (as displayed in Figure 1). In practice, this
optimization is part of the standard BDD package OR
operation. The end result of the above procedure is a BDD
specification of the fast path that accounts for
simplifications of redundancies across signatures. Since
BDDs can be represented as DFAs, this provides a natural
method for fully offloading the signature processing from
the core processors.

The Salt tool has built-in operator support for the bit

manipulations that occur in the signatures and handles
optimization of the boolean functions, including detecting
and optimizing certain logical implications. The clauses
emitted as the CNF representation act as the building blocks
for constructing the BDDs. Since the clauses can be
arbitrarily partitioned and since each partition can be
transformed to a parallel BDD, a single signature or
signature set can be divided and balanced among an
arbitrary number of DFA engines. The BDD package then
provides optimized union (OR) that is faster to generate
than the product-space automata generated by OR'ing
DFAs. This apparent “free lunch” is due to the fact that the
BDDs interpreted as DFAs are acyclic.

: stremp(METHOD,"GET")

bitl

Figure 5: Generation of the fast path signature's BDD
References

[1] J. Caballero, Z. Liang, P. Poosankam, D. Song, “Towards
Generating High Coverage Vulnerability-based Signatures
with Protocol-Level Constraint-guided Exploration”, 2008.

[2] J. Ezick, “Salt™ 1.5 Closing the Programming Gap for
Boolean Satisfiability Solvers,” Reservoir Report, 2007.

[3] R.Pang, V. Paxson, R. Sommer and L. Peterson, “BinPAC: a
yacc for Writing Application Protocol Parsers,” Proceedings
of ACM Internet Measurement Conference, October, 2006.

[4] N. Schear, D. R. Albrecht, N. Borisov, “High-speed
Matching of Vulnerability Signatures,” Symposium on
Recent Advances in Intrusion Detection, 2008.

	Summary
	Exploiting Signature Redundancies
	Parallelization Method

