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Introduction
The emergence of multi-core and many-core architec-

tures in embedded systems has increased the energy and
thermal challenges faced by such systems. As the technol-
ogy for microprocessors moves toward the nanometer scale,
power density becomes one of the major constraints to the
performance improvement of embedded processors. Real-
time embedded signal processing tasks on multi-core sys-
tems have a high potential to thermally stress the die and
negatively impact processor performance. This potential
problem is crudely regulated by Dynamic Thermal Man-
agement (DTM) in commercial processors. DTM is typ-
ically realized by gauging the chip temperature at run-time
to enable dynamical adjustment of the processor voltage and
frequency (DVFS); it slows down the processor upon die
overheat. However, real-time embedded systems often can-
not tolerate the implied performance degradation entailed in
DVFS techniques should any job fail to complete within its
deadline as a result of processor slowdown. Consequently,
DTM alone cannot avoid real-time application failures com-
pletely in the event of die overheat.

This work investigates operating-system assisted, hard-
ware performance counter-based techniques for thermal
control in embedded systems running real-time applications.
Such a technique schedules the processor workload in a way
that reduces the thermal adverse impacts as much as possi-
ble. It makes use of thread adjustment scheduling on multi-
core processors to ensure active tasks observing their real-
time deadlines with lowered performance overhead result-
ing from fewer DTM events.

Thermal-aware scheduling relies on a mechanism to ob-
tain energy consumption and thermal loading on a system.
Our scheduling technique derives energy consumption in-
formation from a model based upon bus traffic and subsys-
tem transactional traffic [3]. The model needs to keep track
of several key micro-architectural events within the proces-
sor and its associated peripherals. It includes a bus-based
energy model, which is dictated by HyperTransport/FSB
transactions amongst cores, caches, memory, and periph-
erals, given that such transactions capture real-time sys-
tem activities and consequently, energy consumption. Our
scheduler employs this model and associated hardware per-
formance counters to regulate the thermal load of real-time
applications on embedded systems. It is being implemented
as an extention to the Power-Aware Dispatcher (PAD) [6]
(to be introduced in OpenSolaris [7]).

Multiplexing Performance Counters
Modern processor cores support between 30 to 500 PeCs

(depending upon the processor) but only permit 2 to 18 of
these counters to be read at one time (again depending upon
processor). Furthermore, certain combinations of PeCs may
not be permitted to be collected at the same time [5].

Using PeCs to gain insight into architectural events (in
our case bus transactions)is complicated by the fact that
the types of events, number of events, and use cases varies
widely, not only across architectures, but across systems
sharing the same Instruction Set Architecture (ISA). For in-
stance, the Intel and AMD implementations of performance
counters have very little in common in spite of the processor
families using the same ISA [6][1].

As an example, to derive the thermal impact of applica-
tion on cache, the scheduler needs to collect nine PeCs to
calculate shared and unshared cache activity on the AMD
Opteron processor: RetiredInstructions, DCAccesses,
DCRefillsL2, DCRefillsFromSystem, ICFetches,
ICrefillsFromL2, ICRefillsFromSystem,
L2RequestsTLB, and L2MissesTLB. The model
must calculate the L2 miss rate and L2 miss ratio using the
following set of formulas with the PeCs as inputs:

L2MissRate = L2misses/RetiredInstructions

L2MissRatio = L2misses/L2Requests

These measures indicate cache activity which our model
uses as an estimator for energy consumption and potential
for a DTM event.

Note that we have to collect nine different PeCs even
though the processor can only collect four of these coun-
ters at a time. For real-time situations, time multiplexing is
the most popular solution to this problem [2]. In this ap-
proach the performance counters are reconfigured for dif-
ferent sets of counter events at regular time intervals. How-
ever, time multiplexing introduces issues with reconfigura-
tion overhead and time alignment of samples.
Scheduler Design

The foundation of our scheduler is the model for run-time
energy consumption detailed in [3]. This model provides a
system-wide view of the energy consumption by making use
of hardware performance counters to relate system power
consumption to its overall thermal envelope.

The scheduler architecture is shown in Figure 1. The de-
sign intent is for our scheduler to be implemented as an ex-
tension of the existing power management infrastructure in
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Figure 1. Thermal Enhancements To Power-
Aware Dispatcher

the operating system. The design is being prototyped as an
enhancement to the Power-Aware Dispatcher (PAD) [7] to
be introduced in the OpenSolaris operating system [4]. A
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Figure 2. Solaris Dispatcher State diagram.

thread can be in any of the states indicated in Figure 2. Our
enhancement to the PAD deals with the transition of state
from being “Runnable in memory” to “Running”. The dis-
patcher decides which processor group (a collection of one
or more processing cores) in which to assign the thread. The
thread is assigned to a core in this group.

The Operating System Power Manager is responsbile to
keeping track of the power events. A Thermal Policy Man-
ager is added to the Power Manager to keep observe the
power and thermal state of the system. The relationship be-
tween the Thermal Policy Manager and the Dispatcher is
shown in Figure 2 and Figure 3. A data collection extension
is added to the platform specific code in the OpenSolaris
kernel that utilizes the Solaris libcpc library to collect the
PeC data required by our model. The Thermal Policy Man-
ager combines this information with the utilization informa-
tion provided by the Dispatcher the overall thermal change
in the next cycle and adjust the schedule of which processor
group allowed access to the run queue in the next cycle.
Concluding Remarks

The OpenSolaris prototype of our scheduler proves the
feasibility of using a model that uses bus traffic and sub-
system transactional traffic to regulate thermal load of ap-
plications. We shall present performance measurements
for a number of multiprocessor benchmarks focused on
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real-time high performance workloads and key general pur-
pose benchmarks such as SPEC CPU2006 and SPECpower
benchmarks.
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