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Abstract

In this work certain alternative techniques or methods for
computing the singular value decomposition (SVD) of a matrix
are pursued in order to study feasibility issues pertaining to
multicore embedded computing implementation efforts. The
objective of thearticleisto present a modeing formulation for
SVD parallel implementation using pMATLAB. Large scale
fast Fourier transform (FFT) operations diagonalize cir culant
matrices of the order 130° by 1307, through Kronecker
products formulations. The modeling and simulation works
were performed on a 64-bit, Intel Xeon workstation with 12
Gigabytes of RAM.
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I ntroduction

This work presents a comparative analysis basethen
implementation of the singular value decomposi{isk'D)
algorithm, using serial and parallel programming.he
SVD transform is a powerful technique for matrix
factorization where the singular values (which aheays
positive and real) are the squares of the eigeesati the
product resulting from the matrix being decomposetks
its conjugate transpose. SVD are useful in obtginin
minimum norm solutions for linear systems of ecuai
representing filtering applications in areas such a
hyperspectral image processing.

Problem Formulation
The SVD ofN by Mmatrix, say4, is as follows:
A= UADAVAT )
wheree ¢VM, U, € "N D, € RNVM  yH g cMXM,
To obtain the SVD of aN-by-M matrix A, [1] proposed:
A= (Fy ®Iy)""UpDaVy (Fy ® Ip)

whereA is a block circular matrix (CB) [3]) is anN-by-
M matrix,V is anM-by-M unitary matrix andais anM-
by-M diagonal matrix with honnegative entries (settiNg:
:M:P),

D= diag(¢1,... ,¢N)l

WhereD is a diagonal matrix carrying the singular values
of the CB matrix. According to reference [6], inngeal, a
circulant matrix is related to Fourier diagonal rmaby

Dy = FynAFyy

Where D, is the spectrum of the first column of the CB

matrixA. Applying a Kronecker property from [4] [5],
Fyy = (Fy ® Fy)

yields,

Dy = (Fy ® F\)A(Fy ® Fy)™"
A= (Fy ® Fy)"'Da(Fy ® Fy)
The following Kronecker property
ACQBD=(AQ®B)(C®D)=>C=I1,=B, A=Fy=D
(UnFy) @ (Fyly) = (Iy ® Fy)(Fy ® Iy)

links the previous mentioned identity to SVD foraugd by
[1] in the following manner:

A= Uy ®Fy)Fy @ I D4y @ Fy) (Fy ® Iy)] ,
yielding
A= (Fy @ Iy) tUpDaVE (Fy @ Iy).

WhereU, = (Iy ® Fy)™1, and V] = (Iy ® Fy). Isolating
for U, DV} gives

UpDaV5 = (Iy ® Fy) " Ay ® Fy)
M ethodology
Using the commutation property from [6], expresaed
Py r(As @ Br)Py,s = Br @ As,
the following transformation was obtained:
A= Pyz Iy ® Fy) " P2,y Up DV Pz (Fi @ Ip)Pyzy.

Noticing that Pyz yUpDVI P2y = UpDV}, results in our
target SVD formulation:

A=Pyn(Iy ® Fy)"UpDaVE Uy ® Fy)Pyz

The implementation of the parallel algorithm wasdzhon
the execution time analysis of its serial impleragéion by
making emphasis on its critical points (most dethye
execution times). The calculation of the circuldmbck
matrix with its respective circulant blocks and the
multiplication of matrices through Kronecker protkic
formulations were parallelized. In particular, & shown
how the local instances can be used to acceletase t
slowest part of the algorithm — updating the blaokimns,
and the local instances multiplying matrices witlock-
columns, respectively.

Results

Two dimensional arrayk[ny, n,] € (ZyxZy) with arbitrary
normal distribution(0,1) were generated to produce
circular matricesA € (Zy2xZyz) for different sizes oiN.



Execution times were documented and displayedConclusions

graphically for different array sizes via serialdaparallel ] ) ) )
processes. Through the increasing influence of parallel High

o ) ~ Performance Computing (HPC), it has become feadible
Table 1 presents the execution times obtained for thalseri create |arge Systems with an ever-increasing nunolber
and parallel implementationszigure 1 presents execution variables. Present investigation efforts seek tmniemore

times using pMATLAB, with two and four processors. about iterative solvers in order to efficiently aelss even
larger systems. The contribution of this paper he t
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Figure 1: Execution time comparison between SVD
computationsusing Pmatlab.



