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Abstract1 

 

In this work certain alternative techniques or methods for 
computing the singular value decomposition (SVD) of a matrix 
are pursued in order to study feasibility issues pertaining to 
multicore embedded computing implementation efforts.  The 
objective of the article is to present a modeling formulation for 
SVD parallel implementation using pMATLAB. Large scale 
fast Fourier transform (FFT) operations diagonalize circulant 
matrices of the order 1302 by 1302,  through Kronecker 
products formulations. The modeling and simulation works 
were performed on a 64-bit, Intel Xeon workstation with 12 
Gigabytes of RAM.  

Keywords: parallel Matlab pMatlab Toolbox, Parallel Computing, 
Kronecker Products, FFT, Singular Value Decomposition (SVD). 

 

Introduction 

This work presents a comparative analysis based in the 
implementation of the singular value decomposition (SVD) 
algorithm, using serial and parallel programming.  The 
SVD transform is a powerful technique for matrix 
factorization where the singular values (which are always 
positive and real) are the squares of the eigenvalues of the 
product resulting from the matrix being decomposed times 
its conjugate transpose. SVD are useful in obtaining 
minimum norm solutions for linear systems of equations 
representing filtering applications in areas such as 
hyperspectral image processing. 
 

Problem Formulation 

The SVD of N by M matrix, say  �,  is as follows: 

� = ������
�  ,   

where ∈ ��×�,  �� ∈ ��×�,  �� ∈ ��×�,  ��
� ∈ ��×� .  

To obtain the SVD of an N-by-M matrix A, [1] proposed: 

� = ��� ⊗ �����������
���� ⊗ ��� 

where A is a block circular matrix (CB) [3], U  is an N-by-
M  matrix, V is an M-by-M  unitary matrix and DA is an M-
by-M diagonal matrix with nonnegative entries (setting: N 
=M=P),   

� = ���� !�,… ,!�#,  

Where � is a diagonal matrix carrying the singular values 
of the CB matrix. According to reference [6], in general, a 
circulant matrix is related to Fourier diagonal matrix by 

�� = �������
�� 

                                                 
 

Where �� is the spectrum of the first column of the CB 
matrix �. Applying a Kronecker property from [4] [5],  

��� = ��� ⊗ ��� 
yields, 

�� = ��� ⊗ ������� ⊗ ����� 

� = ��� ⊗ ���������� ⊗ ���                                     

The following Kronecker property  

�� ⊗ $� ⇒ �� ⊗ $��� ⊗ �� ⇒ � = �& = $;  � = �� = �  

 ������ ⊗ ������ = ��� ⊗ ������ ⊗ ���  

links the previous mentioned identity to SVD formulated by 
[1] in the following manner: 

� = (��� ⊗ ������ ⊗ ���)����(��� ⊗ ������ ⊗ ���) , 

yielding 

� = ��� ⊗ �����������
���� ⊗ ���. 

Where �� = ��� ⊗ �����, and ��
� = ��� ⊗ ���. Isolating 

for ������
� gives  

������
� = ��� ⊗ ��������� ⊗ ��� 

Methodology   

Using the commutation property from [6], expressed as 

*�,+��, ⊗ $+�*�,, = $+ ⊗ �,, 

the following transformation was obtained: 

� = *�-,���� ⊗ �����*�-,������
�*�-,���� ⊗ ���*�-,�. 

Noticing that *�-,������
�*�-,� =  �����

�, results in our 
target SVD formulation: 

� = *�-,���� ⊗ �����������
���� ⊗ ���*�-,� 

 
The implementation of the parallel algorithm was based on 
the execution time analysis of its serial implementation by 
making emphasis on its critical points (most delayed 
execution times). The calculation of the circulant block 
matrix with its respective circulant blocks and the 
multiplication of matrices through Kronecker products 
formulations were parallelized. In particular, it is shown 
how the local instances can be used to accelerate the 
slowest part of the algorithm – updating the block-columns, 
and the local instances multiplying matrices with block-
columns, respectively. 
   

Results  

Two dimensional arrays ℎ(/0, /�) ∈ �1�x1�� with arbitrary 
normal distribution 3�0,1� were generated to produce 
circular matrices � ∈ �1�-x1�-� for different sizes of N. 



Execution times were documented and displayed 
graphically for different array sizes via serial and parallel 
processes. 

Table 1 presents the execution times obtained for the serial 
and parallel implementations.  Figure 1 presents execution 
times using  pMATLAB, with two and four processors. 
 

Table 1: Serial & Parallel SVD Execution Time Results 

 

 
a) Normal 

 
b)    Logarithmic 

Figure 1: Execution time comparison between SVD 
computations using Pmatlab. 

Conclusions2 

Through the increasing influence of parallel High 
Performance Computing (HPC), it has become feasible to 
create large systems with an ever-increasing number of 
variables. Present investigation efforts seek to learn more 
about iterative solvers in order to efficiently address even 
larger systems. The contribution of this paper is the 
proposal and implementation of a robust SVD solver using 
the Kronecker products methodology in a parallel 
architecture environment, with pMATLAB being used as a 
modeling and simulation tool-aid for parallel programming.   
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