

 Modeling Singular Valued Decomposition (SVD) Techniques using Parallel

Programming with pMATLAB.
Miguel Goenaga, Graduate Student, Member, IEEE, Carlos J. González, Graduate Student, Member, IEEE,

Inerys Otero, Graduate Student, Member, IEEE, Juan Valera, Graduate Student, IEEE Member
Domingo Rodríguez, Advisor - Professor, Member, IEEE.

Abstract1

In this work certain alternative techniques or methods for
computing the singular value decomposition (SVD) of a matrix
are pursued in order to study feasibility issues pertaining to
multicore embedded computing implementation efforts. The
objective of the article is to present a modeling formulation for
SVD parallel implementation using pMATLAB. Large scale
fast Fourier transform (FFT) operations diagonalize circulant
matrices of the order 1302 by 1302, through Kronecker
products formulations. The modeling and simulation works
were performed on a 64-bit, Intel Xeon workstation with 12
Gigabytes of RAM.

Keywords: parallel Matlab pMatlab Toolbox, Parallel Computing,
Kronecker Products, FFT, Singular Value Decomposition (SVD).

Introduction

This work presents a comparative analysis based in the
implementation of the singular value decomposition (SVD)
algorithm, using serial and parallel programming. The
SVD transform is a powerful technique for matrix
factorization where the singular values (which are always
positive and real) are the squares of the eigenvalues of the
product resulting from the matrix being decomposed times
its conjugate transpose. SVD are useful in obtaining
minimum norm solutions for linear systems of equations
representing filtering applications in areas such as
hyperspectral image processing.

Problem Formulation

The SVD of N by M matrix, say �, is as follows:

� = ������
� ,

where ∈ ��×�, �� ∈ ��×�, �� ∈ ��×�, ��
� ∈ ��×� .

To obtain the SVD of an N-by-M matrix A, [1] proposed:

� = ��� ⊗ �����������
���� ⊗ ���

where A is a block circular matrix (CB) [3], U is an N-by-
M matrix, V is an M-by-M unitary matrix and DA is an M-
by-M diagonal matrix with nonnegative entries (setting: N
=M=P),

� = ���� !�,… ,!�#,

Where � is a diagonal matrix carrying the singular values
of the CB matrix. According to reference [6], in general, a
circulant matrix is related to Fourier diagonal matrix by

�� = �������
��

Where �� is the spectrum of the first column of the CB
matrix �. Applying a Kronecker property from [4] [5],

��� = ��� ⊗ ���
yields,

�� = ��� ⊗ ������� ⊗ �����

� = ��� ⊗ ���������� ⊗ ���

The following Kronecker property

�� ⊗ $� ⇒ �� ⊗ $��� ⊗ �� ⇒ � = �& = $; � = �� = �

 ������ ⊗ ������ = ��� ⊗ ������ ⊗ ���

links the previous mentioned identity to SVD formulated by
[1] in the following manner:

� = (��� ⊗ ������ ⊗ ���)����(��� ⊗ ������ ⊗ ���) ,

yielding

� = ��� ⊗ �����������
���� ⊗ ���.

Where �� = ��� ⊗ �����, and ��
� = ��� ⊗ ���. Isolating

for ������
� gives

������
� = ��� ⊗ ��������� ⊗ ���

Methodology

Using the commutation property from [6], expressed as

�,+��, ⊗ $+��,, = $+ ⊗ �,,

the following transformation was obtained:

� = *�-,���� ⊗ �����*�-,������
�*�-,���� ⊗ ���*�-,�.

Noticing that *�-,������
�*�-,� = �����

�, results in our
target SVD formulation:

� = *�-,���� ⊗ �����������
���� ⊗ ���*�-,�

The implementation of the parallel algorithm was based on
the execution time analysis of its serial implementation by
making emphasis on its critical points (most delayed
execution times). The calculation of the circulant block
matrix with its respective circulant blocks and the
multiplication of matrices through Kronecker products
formulations were parallelized. In particular, it is shown
how the local instances can be used to accelerate the
slowest part of the algorithm – updating the block-columns,
and the local instances multiplying matrices with block-
columns, respectively.

Results

Two dimensional arrays ℎ(/0, /�) ∈ �1�x1�� with arbitrary
normal distribution 3�0,1� were generated to produce
circular matrices � ∈ �1�-x1�-� for different sizes of N.

Execution times were documented and displayed
graphically for different array sizes via serial and parallel
processes.

Table 1 presents the execution times obtained for the serial
and parallel implementations. Figure 1 presents execution
times using pMATLAB, with two and four processors.

Table 1: Serial & Parallel SVD Execution Time Results

a) Normal

b) Logarithmic

Figure 1: Execution time comparison between SVD
computations using Pmatlab.

Conclusions2

Through the increasing influence of parallel High
Performance Computing (HPC), it has become feasible to
create large systems with an ever-increasing number of
variables. Present investigation efforts seek to learn more
about iterative solvers in order to efficiently address even
larger systems. The contribution of this paper is the
proposal and implementation of a robust SVD solver using
the Kronecker products methodology in a parallel
architecture environment, with pMATLAB being used as a
modeling and simulation tool-aid for parallel programming.

References

[1] Cao-Huu, T. and Evequoz, C. “Singular value decomposition
transform with and FFT-based algorithm on the Connection
Machine CM5,” Electrical and Computer Engineering, 1995.
Canadian Conference, Volume: 2, page(s): 1046-1049 vol.2,
5-8 Sep 1995.

[2] Chen, L. and Yap, K. H. “Regularized Interpolation Using
Kronecker Product for Still Images,” Image Processing,
2005. ICIP 2005. IEEE International Conference, Volume:
2, page(s): II- 1014-17, 11-14 Sept. 2005.

[3] Rjasanow, S. “Effective Algorithms With Circulant-Block
Matrices,” Linear algebra and its
applications, Volume. 202, Pages. 55-69, 1994.

[4] Van Loan, C. F. “The ubiquitous Kronecker product,”
Journal of Computational and Applied Mathematics, Volume
123, Issue 1-2, Pages: 85 - 100 November 2000.

[5] Kamm, J. and Nagy J. “Kronecker product and SVD
approximations in the image restoration”, Linear Algebra
and its Applications, Volume 284, Issues 1-3, 15 November
1998, Pages 177-192.

[6] Johnson, J. Johnson, R. Rodriguez, D. Tolimieri, R. “A
Methodology for Designing, Modifying, and Implementing
Fourier Transform Algorithms on Various Architectures,”
Journal of Circuits, Systems and Signal Processing, Vol. 9,
No. 4, pp. 449-500, Birkäuser, 1990.

[7] Boutsidis, C. and Gallopoulos, E. “SVD based initialization: A
head start for nonnegative matrix factorization”, Journal of
the Pattern Recognition Society, Science Direct, Pattern
Recognition, Vol. 41, pp. 1350-1362, September 20, 2007.

[8] Tsitsas, N. Alivizatos, E. and Kalogeropoulos, G. “A recursive
algorithm for the inversion of matrices with circulant
blocks”, Journal of Applied Mathematics and Computation,
Science Direct, Vol. 188, pp. 877-894, October, 2007.

[9] Xu, W. and Qiao, S. “A fast symmetric SVD algorithm for
square Hankel Matrices”, Journal of Linear Algebra and its
applications, Vol. 428, pp. 550-563, June 03, 2007.

2000 4000 6000 8000 10000 12000 14000 16000

1000

2000

3000

4000

5000

6000

7000

Execution Time

Circular Matrix Dimension (NxN) [# of points]

E
xe

cu
tio

n
T

im
e

[s
ec

on
ds

]

SVD via FFT Kronecker Serial

SVD via FFT Kronecker Parallel Np=2
SVD via FFT Kronecker Parallel Np=4

2000 4000 6000 8000 10000 12000 14000 16000

10
-1

10
0

10
1

10
2

10
3

Execution Time

Circular Matrix Dimension (NxN) [# of points]

E
xe

cu
tio

n
T

im
e

[s
ec

on
ds

]

SVD via FFT Kronecker Serial

SVD via FFT Kronecker Parallel Np=2
SVD via FFT Kronecker Parallel Np=4

